Back to article: Guidelines and recommendations on yeast cell death nomenclature

62. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, and Madeo F (2002). Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17(5): 763–773.

63. Madeo F, Fröhlich E, and Fröhlich KU (2003). A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139(3): 729–734.

69. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, and Fröhlich KU (2002). A caspase-related protease regulates apoptosis in yeast. Mol Cell 9(4): 911–917.

96. Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Fröhlich K-U, Sigrist S, and Madeo F (2007). Endonuclease G regulates budding yeast life and death. Mol Cell 25(2): 233–246.

97. Deere D, Shen J, Vesey G, Bell P, Bissinger P, and Veal D (1998). Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14(2): 147–160.

100. Kwolek-Mirek M, and Zadrag-Tecza R (2014). Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14(7): 1068–1079.

103. Eisenberg T, Carmona-Gutierrez D, Büttner S, Tavernarakis N, and Madeo F (2010). Necrosis in yeast. Apoptosis 15(3): 257–268.

104. Carmona-Gutiérrez D, Bauer MA, Ring J, Knauer H, Eisenberg T, Büttner S, Ruckenstuhl C, Reisenbichler A, Magnes C, Rechberger GN, Birner-Gruenberger R, Jungwirth H, Fröhlich K-U, Sinner F, Kroemer G, and Madeo F (2011). The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death Dis 2(5): e161.

108. Jung PP, Christian N, Kay DP, Skupin A, and Linster CL (2015). Protocols and programs for high-throughput growth and aging phenotyping in yeast. PLoS One 10(3): e0119807.

109. Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, and Fields S (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2): 174–184.

110. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, and Muchowski PJ (2005). A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37(5): 526–531.

111. Teng X, and Hardwick JM (2013). Quantification of Genetically Controlled Cell Death in Budding Yeast. Methods Mol Biol 1004: 161–170.

112. Breeuwer P, Drocourt JL, Bunschoten N, Zwietering MH, Rombouts FM, and Abee T (1995). Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol 61(4): 1614–1619.

113. Czekanska EM (2011). Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol 740: 27–32.

114. Fannjiang Y, Cheng W-C, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basañez G, and Hardwick JM (2004). Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18(22): 2785–2797.

115. Teng X, and Hardwick JM (2009). Reliable method for detection of programmed cell death in yeast. Methods Mol Biol 559: 335–342.

116. Kuhn DM, Balkis M, Chandra J, Mukherjee PK, and Ghannoum MA (2003). Uses and Limitations of the XTT Assay in Studies of Candida Growth and Metabolism. J Clin Microbiol 41(1): 506–508.

117. Bapat P, Nandy SK, Wangikar P, and Venkatesh KV (2006). Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT): Measurement of CFU in about 200 s . J Microbiol Methods 65(1): 107–116.

118. Noda T (2008). Viability Assays to Monitor Yeast Autophagy. In: Methods Enzymol, editor DJ Klionsky. Academic Press pp 27–32.

119. Anséhn S, and Nilsson L (1984). Direct membrane-damaging effect of ketoconazole and tioconazole on Candida albicans demonstrated by bioluminescent assay of ATP. Antimicrob Agents Chemother 26(1): 22–25.

120. Ludovico P, Sansonetty F, and Côrte-Real M (2001). Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiol Read Engl 147(Pt 12): 3335–3343.

121. Cottet-Rousselle C, Ronot X, Leverve X, and Mayol JF (2011). Cytometric assessment of mitochondria using fluorescent probes. Cytometry A Cytometry A.

122. Perrone GG, Tan S-X, and Dawes IW (2008). Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783(7): 1354–1368.

123. Lam YT, Aung-Htut MT, Lim YL, Yang H, and Dawes IW (2011). Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. v 50(8): 963–970.

124. Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, and Breitenbach M (2001). Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39(5): 1166–1173.

125. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, and Fröhlich KU (1999). Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4): 757–767.

149. Eastwood MD, and Meneghini MD (2015). Developmental Coordination of Gamete Differentiation with Programmed Cell Death in Sporulating Yeast. Eukaryot Cell 14(9): 858–867.

157. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich K-U, Sinner F, Tavernarakis N, Minois N, Kroemer G, and Madeo F (2009. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11): 1305–1314.

158. Singh K, Kang PJ, and Park H-O (2008). The Rho5 GTPase is necessary for oxidant-induced cell death in budding yeast. Proc Natl Acad Sci U S A 105(5): 1522–1527.

159. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, and Côrte-Real M (2002). Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13(8): 2598–2606.

160. Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich K-U, Manns J, Candé C, Sigrist SJ, Kroemer G, and Madeo F (2004). An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166(7): 969–974.

161. Pérez-Gallardo RV, Briones LS, Díaz-Pérez AL, Gutiérrez S, Rodríguez-Zavala JS, and Campos-García J (2013). Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res 13(8): 804–819. 10.1111/1567-1364.12090

162. Gourlay CW, and Ayscough KR (2005). Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 118(10): 2119–2132.

163. Pringle JR, Preston RA, Adams AE, Stearns T, Drubin DG, Haarer BK, and Jones EW (1989). Fluorescence microscopy methods for yeast. Methods Cell Biol 31: 357–435.

164. Hughes AL, and Gottschling DE (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428): 261–265.

165. Rockenfeller P, Ring J, Muschett V, Beranek A, Buettner S, Carmona-Gutierrez D, Eisenberg T, Khoury C, Rechberger G, Kohlwein SD, Kroemer G, and Madeo F (2010). Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle 9(14): 2836–2842.

166. Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, and Klionsky DJ (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16(7): 3438–3453.

167. Shintani T, and Klionsky DJ (2004). Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway.. J Biol Chem 279(29): 29889–29894.

168. Cheong H, and Klionsky DJ (2008). Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol 451: 1–26.

169. Kim J, Huang WP, and Klionsky DJ (2001 J Cell Biol 152(1): 51–64.

170. Shintani T, and Reggiori F (2008). Fluorescence microscopy-based assays for monitoring yeast Atg protein trafficking. Methods Enzymol 451: 43–56.

171. Camougrand N, Kissová I, Salin B, and Devenish RJ (2008). Monitoring mitophagy in yeast. Methods Enzymol 451: 89–107.

172. Noda T, and Klionsky DJ (2008). The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol 451: 33–42.

173. Rosado CJ, Mijaljica D, Hatzinisiriou I, Prescott M, and Devenish RJ (2008). Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy 4(2): 205–213.

174. Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues M, Tenreiro S, Franssens V, Reichert AS, Outeiro TF, Winderickx J, and Ludovico P (2012). SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8(10): 1494–1509.

175. Klionsky DJ et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1): 1–222.

176. Delorme-Axford E, Guimaraes RS, Reggiori F, and Klionsky DJ (2015). The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 75: 3–12.

177. Yang Y, Hu L, Zheng H, Mao C, Hu W, Xiong K, Wang F, and Liu C (2013). Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34(5): 625–635.

178. Binda M, Péli-Gulli M-P, Bonfils G, Panchaud N, Urban J, Sturgill TW, Loewith R, and De Virgilio C (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35(5): 563–573.

179. Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, and Herman PK (2004). The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279(20): 20663–20671.

180. Kira S, Tabata K, Shirahama-Noda K, Nozoe A, Yoshimori T, and Noda T (2014). Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy 10(9): 1565–1578.

181. Yorimitsu T, Zaman S, Broach JR, and Klionsky DJ (2007). Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18(10): 4180–4189.

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.