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How organisms regulate their size is a major question 

in biology. With a few notable exceptions (such as cell divi-

sions in the early embryo), most cells need to reach a criti-

cal size in order to initiate a new cell cycle. How cells set a 

critical cell size, and how they know it has been reached, is 

not well understood. Using various types of experimental 

systems, decades ago two main models were proposed for 

cell size homeostasis: the deterministic model and the 

probabilistic model.  

The deterministic model postulates that cells only enter 

the cell cycle when they have reached a critical cell size. 

Early studies clearly showed that most of cell growth oc-

curs in the unbudded (i.e. G1) phase of the cell cycle [1]. 

These studies also observed that upon birth, the daughter 

cell is smaller than its mother, and that it spends more 

time in G1 to attain a certain critical size required for cell 

cycle entry [2]. Furthermore, the critical size can be reset 

by the cell in response to changes in the quality and availa-

bility of nutrients [3]. In the presence of a relatively poor 

carbon source, such as glycerol, critical cell size is relatively 

small. When cells are transferred to a rich carbon source, 

like glucose, they temporarily arrest in G1 to reset the criti-

cal size to a larger size [3]. Together, these findings result-

ed in formulation of a model in which “growth and not the 

events of the DNA division cycle are rate limiting for cellu-

lar proliferation and that the attainment of a critical cell 

size is a necessary prerequisite for the "Start" event in the 

DNA-division cycle” [2]. In other words, cells have a mech-

anism for monitoring their size, and only when a critical 

size has been reached a series of events is initiated leading 

to cell division [4]. 

Around the same time an alternative explanation for 

the relationship between cell size and the cell cycle 

emerged, referred to as the transition probability hypothe-

sis [5]. This probabilistic model divides the cell cycle in two 

parts, the B phase (consisting of S, G2 and M), and the A 

phase (consisting of G1). Cells are waiting in the A phase 

for a random event that triggers transition to the B phase, 

and they can stay in the A phase for any length of time, but 

the probability of transitioning into the B phase is constant 

[6]. This model is supported by the observation that cell 

size at the time of bud emergence (i.e. cell cycle entry) is 

variable between individual parental cells [7]. Later re-

finements include the sloppy size control (SSC) model, in 

which the probability of entering the B phase increases 

with cell size, such that small cells have a low probability 

and large cells a high probability [7, 8]. The probabilistic 

model is supported by observations that the distribution of 

cell cycle times includes an exponential component that 

cannot be explained simply by a deterministic model [9, 

10]. However, it was noted that the probabilistic and de-

terministic models are not necessarily mutually exclusive 

[11], as demonstrated by studies in Chlamydomonas and S. 

cerevisiae [12, 13]. Thus, both deterministic and probabilis-

tic models can operate in one cell cycle. 

One issue that somewhat befuddles the field stems 

from studies that overly relied on the deterministic model 

of cell size control, strictly using cell size as a read-out for 

the timing of Start [14]. Here, a gene is classified as an in-

hibitor of Start when its inactivation results in cell cycle 

entry with a small cell size. It is inferred that such mutants 

enter the cell cycle too early (i.e. when the correct cell size 

has not yet been attained), and that under normal condi-

tions the function of the gene is therefore to suppress Start 

until the cell has reached its correct size. Conversely, genes 

that, when mutated, result in cell cycle entry with large cell 

size are classified as activators of Start. This applies well to 

cell cycle genes, because mutations in genes that regulate 

the cell cycle are particularly well correlated with cell size. 

For instance, deletion of the cyclin CLN3 delays Start and 

results in large cell size at the time of cell cycle entry, 

whereas expression of a hyperactive allele of CLN3 ad-

vances Start, resulting in cell cycle entry at smaller cell size 

[15, 16]. This line of reasoning has been successfully ap-
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plied for identification of novel cell cycle genes simply by 

systematically screening mutant libraries for deviant cell 

size. For instance, whi5∆ mutants were found to have a 

small cell size phenotype [14], indicating that under normal 

conditions WHI5 functions as an inhibitor of Start. Indeed, 

WHI5 was subsequently shown to inhibit cell cycle entry by 

inhibiting the activity of SBF, a transcription factor complex 

that is required for cell cycle entry ([17, 18], for a review 

see [19]). Thus, for WHI5 there exists an excellent correla-

tion between cell cycle regulation and cell size. 

In contrast, other studies have shown that cell size at 

Start is not necessarily a good proxy for regulation of the 

timing of Start. For example, deletion of SFP1, which en-

codes a transcription factor for ribosomal protein genes, 

results in cell cycle entry at very small cell size [14, 20]. 

Strictly applying the deterministic model, SFP1 was there-

fore classified as a repressor of Start [14]. However, when 

the actual time was measured from birth of the daughter 

cell to onset of DNA replication (i.e. G1 phase), it turned 

out that sfp1∆ mutants spend an abnormally long time in 

G1 phase [20]. This indicates that SFP1 is actually required 

for promoting Start, not for repressing it. Independent 

studies have come to the same conclusion that SFP1 likely 

has a positive role at Start [21]. Thus, the deterministic-

centered idea that cell size at Start alone is a good proxy 

for G1 progression is too simple. In addition to critical cell 

size, other factors must also be taken into account, such as 

cell size at birth, the growth rate during G1 phase, and the 

potential effect of stochastic events [13, 20, 21]. Further 

complexity is also added by the fact that in addition to all 

these intrinsic parameters, environmental conditions also 

affect cell size, such as the availability and quality of nutri-

ents [3]. Despite the fact that nutrients – and thus cell me-

tabolism – play an important role in determining cell size, 

the involvement of metabolic genes has received surpris-

ingly little attention, possibly because they were deemed 

less interesting than, say, cell cycle genes. Taken together, 

the mechanisms that the cell uses to regulate its size are 

clearly very complex, and we do not yet fully understand 

all the parameters and players involved in this process. 

Against this backdrop, recent studies have begun to 

characterize some of these important parameters [13, 21], 

focusing in particular on the variability in cell size that 

commonly occurs at the time of budding, which was first 

observed decades ago (e.g., [7]). Different explanations for 

this variability have been put forward. For instance, one 

report showed that cell size variability at Start is in large 

part due to molecular noise intrinsic to the mechanisms 

that control the transcriptional program required for cell 

cycle entry [13]. In contrast, others have found that the 

variation in cell size at Start is not because of an inherent 

stochastic behavior, but that it is an individual parameter 

set by the rate at which each individual cell grows during 

G1 [21]. The reason for this apparent disagreement is un-

clear, but it is possible that several parameters have to be 

analyzed simultaneously in order to get the full picture. 

In a recent publication in Microbial Cell [22], Soma et al. 

did exactly that, i.e. measure birth size, the rate of cell 

growth during G1, the critical cell size and the duration of 

G1, and all this in the presence of different carbon sources. 

This approach allowed them to tease apart the effect of 

metabolism and growth rate on setting of critical cell size. 

Interestingly, they identified physiological nutritional con-

ditions in which cell size at Start can be set independently 

of the rate of size increase in G1. They also described sev-

eral mutants in which critical cell size is uncoupled from 

the growth rate. For instance, cells lacking ADK1, the gene 

encoding adenylate kinase, have a much lower growth rate 

during G1 than wild-type cells, yet their critical size is much 

larger. These findings are at apparent odds with the re-

cently postulated hypothesis that the rate of size increase 

is a major determinant of critical cell size [21]. Soma et al. 

[22] argue that this discrepancy may stem from (i) the fact 

that an insufficient number of mutants and nutritional 

conditions were studied by Ferrezuelo et al. [21], and (ii) 

from the use of a different method to calculate increases in 

cell size [13]. Whichever the explanation, while the rate of 

size increase during G1 may contribute to setting the criti-

cal cell size in some cases, the findings by Soma et al. clear-

ly demonstrate that this certainly does not hold true for all 

growth conditions [22]. 

Another observation by Soma et al. is the large pheno-

typic space occupied by mutations in different metabolic 

genes, i.e. there did not appear to be a clear correlation 

between birth size, the rate of size increase and critical size. 

One explanation is that multiple metabolic pathways con-

trol different aspects of these processes. This would not be 

surprising, given the fact that cell growth and the cell cycle 

must be tightly regulated to ensure homeostasis. Compre-

hensive epistasis analysis of larger sets of mutants will be 

important for determining how these pathways operate to 

control cell size during G1. Another, less interesting expla-

nation could be that mutations in metabolic genes often 

have widespread effects on cell physiology, which particu-

larly affect G1-specific events [23]. For instance, deletion of 

the aspartate kinase HOM3, which is important for biosyn-

thesis of methionine and threonine, indirectly also affects 

DNA replication to cause cell cycle defects [24]. Such plei-

otropy can make it difficult to dissect the exact effects of 

each pathway on birth size, the rate of cell growth and 

critical size. Nonetheless, it is clear that metabolic path-

ways play an important, previously underestimated role in 

these processes. 

In conclusion, how metabolic pathways are wired into 

the network that sets critical cell size remains mysterious. 

Unraveling the underlying molecular mechanisms will be a 

major goal for future work, and the study by Soma et al. 

provides an important framework for these studies. 
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