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ABSTRACT  Horizontal gene transfer has emerged as a crucial driving force for 

the evolution of eukaryotes. This also includes Plasmodium falciparum and 

related economically and clinically relevant apicomplexan parasites, whose 

rather small genomes have been shaped not only by natural selection in 

different host populations but also by horizontal gene transfer following 

endosymbiosis. However, there is rather little reliable data on horizontal gene 

transfer between animal hosts or bacteria and apicomplexan parasites. Here 

we show that apicomplexan homologues of peroxiredoxin 5 (Prx5) have a 

prokaryotic ancestry and therefore represent a special subclass of Prx5 

isoforms in eukaryotes. Using two different immunobiochemical approaches, 

we found that the P. falciparum Prx5 homologue is dually localized to the 

parasite plastid and cytosol. This dual localization is reflected by a modular 

Plasmodium-specific gene architecture consisting of two exons. Despite the 

plastid localization, our phylogenetic analyses contradict an acquisition by 

secondary endosymbiosis and support a gene fusion event following a 

horizontal prokaryote-to-eukaryote gene transfer in early apicomplexans. The 

results provide unexpected insights into the evolution of apicomplexan 

parasites as well as the molecular evolution of peroxiredoxins, an important 

family of ubiquitous, usually highly concentrated thiol-dependent 

hydroperoxidases that exert functions as detoxifying enzymes, redox sensors 

and chaperones. 
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INTRODUCTION 

Parasitic lifestyles require dramatic changes of parasite 

genomes. An important option for such changes is the 

horizontal transfer of single or multiple genes across 

regular mating barriers [1-3]. Accordingly, horizontal gene 

transfer following primary and secondary endosymbiosis 

has significantly altered the genomes of apicomplexan 

parasites including the human malaria parasite 

Plasmodium falciparum [4-7]. In contrast to our knowledge 

on the acquisition of parasite genes from endosymbionts, 

only few examples for horizontal gene transfer from animal 

hosts or bacteria to apicomplexan parasites have been 

described [7-12]. These examples support the importance 

of horizontal gene transfer for the evolution of 

apicomplexan parasites with regard to metabolic 

streamlining [8, 9], the coordinated regulation of gene 

expression and the optimization of cytoadhesive domains 

on the parasite surface [11-13].  

As apicomplexan parasites often occupy potentially 

harmful pro-oxidative ecological niches, such as 

macrophages or vertebrate erythrocytes, genetic events 

including horizontal gene transfer might also have shaped 

the parasites' peculiar redox metabolism. Peroxiredoxins 

are central players of the redox metabolism in pro- and 

eukaryotes. These usually highly concentrated enzymes 

detoxify hydroperoxides but can also exert functions as 

temporal redox sensors and chaperones [14-18]. The 

genome of P. falciparum encodes five different 

peroxiredoxins [19], some of which have been shown to 

play a role in parasite development in vivo [20, 21]. 

Furthermore, the parasite imports a highly abundant host 

peroxiredoxin for hydroperoxide removal [22]. We recently 
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characterized the so-called P. falciparum antioxidant 

protein (PfAOP) as a model enzyme for the Prx5 subfamily 

of peroxiredoxins in vitro [23]. PfAOP is rather unusual 

because of its ability to reduce hydrophobic 

hydroperoxides with glutathione and glutaredoxin as 

electron donors [23-26]. So far, this enzyme has not been 

characterized in vivo. Here we show that PfAOP is dually 

localized to the parasite plastid and cytosol. The plastid 

localization is not the result of a gene acquisition by 

secondary endosymbiosis but presumably originates from 

a gene fusion event after a horizontal prokaryote-to-

eukaryote gene transfer in a marine apicomplexan 

ancestor. These findings provide novel insights into the 

evolution of apicomplexan parasites and peroxiredoxins 

and might initiate the discovery of overseen horizontal 

gene transfer events. 

 

RESULTS 

PfAOP is dual localized to the apicoplast and cytosol  

PfAOP was previously predicted to localize to the 

apicoplast [25, 26], and an episomally encoded fusion 

construct between GFP and the N-terminus of PfAOP 

without its Prx5 domain was indeed detected in this plastid 

organelle [27]. When we analysed the subcellular 

localization of endogenous PfAOP by immunofluorescence 

microscopy, we observed punctate as well as network 

structures that are characteristic for the apicoplast [28]. 

Much to our surprise, we furthermore detected a rather 

strong fluorescence in the parasite cytosol (Fig. 1A). Our 

purified peptide antibodies used for the localization 

experiments were specific for PfAOP (Fig. S1), and 

immunofluorescence microscopy with preimmune serum 

gave no signal under the same experimental conditions. 

We therefore hypothesised that PfAOP is dual localized. To 

further address this possibility, we generated P. falciparum 

cell extracts by saponin lysis and performed a subcellular 

fractionation. Subsequent western blot analyses revealed a 

dual localization of PfAOP in the cytosolic fraction as well 

as the organellar, apicoplast-containing fraction (Fig. 1B). 

Cytosolic Hsp70 and aldolase as well as Cdc48 in the 

apicoplast served as established marker proteins [29]. The 

apparent size of PfAOP in both subcellular fractions was 

approximately 22 kDa and therefore slightly smaller than 

recombinant His-tagged PfAOP
∆59

 which runs at 

approximately 25 kDa [23] (Fig. 1B and Fig. S1). 

Unprocessed full length PfAOP with a calculated molecular 

mass of 28.1 kDa was not observed (Fig. S1). In addition, 

the punctate structures in Fig. 1A were confirmed to 

represent the apicoplast, as revealed by co-localization 

experiments with transgenic parasites that expressed a 

GFP-tagged apicoplast marker protein (Fig. 1C). In 

summary, PfAOP is not exclusively an apicoplast protein 

but is actually dual localized to the apicoplast and the 

parasite cytosol.  

 

A modular gene architecture reflects the dual localization  

The gene architecture of PfAOP is conserved among 

Plasmodium species: Exon1 encodes the bipartite 

topogenic signal (BTS) consisting of an ER-type signal 

followed by a plant-like transit peptide required for 

targeting to the apicoplast [28]. Please note that the BTS is 

usually processed upon protein import [28] in accordance 

with the observed size of mature PfAOP in Fig. 1B and Fig. 

S1. Exon2 encodes the Prx5 domain (Fig. 2A and Fig. S2). 

FIGURE 1: Dual localization of PfAOP. (A) 

Immunofluorescence localization of PfAOP in 

blood stage parasites. (B) Detection of PfAOP 

and marker proteins by western blotting after 

subcellular fractionation. The total parasite 

lysate (T), the supernatant (S) and the organel-

lar pellet fraction (P) are shown from the left 

to the right side. PfAOP was detected at ap-

proximately 22 kDa (Fig S1). Apicoplast Cdc48, 

Hsp70 and aldolase were detected at approxi-

mately 130, 70 and 40 kDa, respectively. (C) 

Co-localization analysis of PfAOP and a chime-

ra of acyl-carrier protein and GFP (ACP-GFP) as 

an apicoplast-localized marker protein. 
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The BTS is necessary and sufficient to target PfAOP to the 

apicoplast, as revealed by fluorescence microscopy and 

subcellular fractionation assays with transgenic parasites 

expressing different GFP-tagged PfAOP constructs. 

Removal of the N-terminus in PfAOP
∆N-term

-GFP abrogated 

the apicoplast targeting, whereas constructs with mutated 

methionine residues at the start of the Prx5 domain 

(PfAOP
M71A/M77A

-GFP) or without the C-terminal Prx5 

domain (PfAOP
BTS

-GFP) were found exclusively in the 

apicoplast (Fig. 2B,C and Fig. S3). To analyse the 

evolutionary conservation of the modular architecture of 

PfAOP and its Plasmodium homologues, we searched the 

genomes of other apicomplexan parasites for similar genes. 

We were able to identify Prx5 homologues in Toxoplasma 

gondii and Neospora caninum but not in Cryptosporidium, 

Eimeria, Babesia and Theileria. The Prx5 homologues from 

Toxoplasma and Neospora are encoded by a single exon 

(Fig. 2A) and have  significantly  altered  N-termini  (Fig.  S4).  

Furthermore, in contrast to their BTS-containing 

Plasmodium homologues, the Toxoplasma and Neospora 

proteins are predicted to localize to the mitochondrial 

matrix or the endoplasmic reticulum (using a variety of 

prediction programmes as listed in the methods section). 

In summary, Prx5 homologues are found in several 

apicomplexan parasites but the modular gene architecture 

of PfAOP with its separate BTS-encoding exon1 appears to 

be specific for Plasmodium species. 

 

FIGURE 2: The modular gene architecture re-

flects the dual localization of PfAOP. (A) Sche-

matic summary of gene and protein sequence 

comparisons between Prx5 isoforms from 

apicomplexan parasites. The targeting sequence 

of PfAOP and predicted pre-sequences (PS?) are 

indicated. The scheme is based on data bank 

entries TGGT1_038055, NCLIV_014020 and the 

entries given in Fig. S4. (B) Confocal live cell 

imaging of blood stage parasites expressing the 

indicated PfAOP-GFP chimera. (C) Subcellular 

fractionation and western blot analyses of the 

GFP-expressing strains from panel b. PfAOP
∆N-

term
-GFP was detected at approximately 49 kDa 

in accordance with the calculated molecular 

mass. As expected for successful BTS-processing 

upon apicoplast import, the calculated/detected 

molecular masses for PfAOP
BTS

-GFP and 

PfAOP
M71A/M77A

-GFP were 35/25 and 55/49 kDa, 

respectively. 
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Prokaryotic ancestry and gene fusion of PfAOP 

The apicoplast of apicomplexan parasites is a chloroplast-

like organelle that was most likely acquired by secondary 

endosymbiosis after engulfment of a single-celled red alga 

by an auxotrophic protist [30, 31]. As a result, numerous 

genes of apicomplexan parasites, such as ApiAP2 

transcription factors, the histone modifier Ashr3 and fatty 

acid synthases, probably have an algal origin [4, 7, 12, 13]. 

Since PfAOP carries a BTS, we wanted to analyse its 

phylogenetic origin and potential acquisition by secondary 

endosymbiosis. Although PfAOP and plant Prx5 isoforms 

share several properties on the protein level [23, 24, 32], 

PfAOP and its apicomplexan homologues did not cluster 

together with algal or plant homologues in phylogenetic 

sequence analyses (Fig. 3). In contrast, highest similarities 

were found between apicomplexan and bacterial Prx5 

homologues. Even though the bootstrap values in the 

resulting phylogenetic tree were low, none of the 

bootstrapped trees recovered the apicomplexan clade as a 

monophyletic branch with any algae or alveolate species. 

We further discarded such hypotheses by testing 96 

alternative tree topologies with different constrained 

positions for the monophyletic apicomplexan clade. The 

results were consistent regardless of the alignment 

trimming strategy or phylogenetic inference methodology 

used (i.e. maximum likelihood or Bayesian inference).  

Altogether, even though the phylogenetic signal was 

not sufficiently strong to elucidate a clear ancestor for the 

PfAOP gene, our tests revealed a phylogenetic 

incongruence that excludes a horizontal gene transfer from 

an algal nucleus and that is in agreement with a direct 

prokaryotic ancestry of PfAOP and its apicomplexan 

homologues. Hence, the apicoplast localization of PfAOP is 

not a consequence of secondary endosymbiosis, but is 

presumably derived from the secondary addition of exon1.  

Please note that we were unable to identify similar 

bacterial-like Prx5 homologues in dinoflagellates or other 

alveolates by BLAST searches. This excludes a 

mitochondrial ancestry of PfAOP and suggests a horizontal 

prokaryote-to-eukaryote gene transfer after the 

divergence of the apicomplexan and dinoflagellate lineages. 

(The few Prx5 homologues that were identified in other 

alveolates, including two Perkinsus species and the ciliates 

Oxytricha trifallax and Ichthyophthirius multifiliis, are in the 

exclusively eukaryotic branch of Fig. 3, which might point 

to a horizontal gene transfer resulting from secondary 

endosymbiosis for these selected genes). In summary, our 

data support a prokaryotic ancestry and contradict a 

plastid or mitochondrial origin of apicomplexan Prx5 

homologues.  

 

DISCUSSION 

When exactly might the prokaryote-to-eukaryote gene 

transfer of a Prx5 homologue have occurred? Among 

apicomplexan parasites, the blood parasites Babesia and 

Theileria are closely related to Plasmodium and are 

altogether classified as aconoidasida, whereas 

Cryptosporidium and the coccidia Toxoplasma, Neospora 

and Eimeria are conoidasida [6]. The presence of similar 

Prx5 homologues in aconoidasida and conoidasida (Fig. 2A 

and Fig. 3) suggests that the gene was acquired before 

both parasite lines have diverged - which presumably 

occurred before the Cambrian radiation [33] - because a 

single gene acquisition followed by the loss of the 

bacterial-like Prx5 homologue in some apicomplexans is 

much more likely than independent gene acquisitions in 

Plasmodium, Toxoplasma and Neospora. A plausible 

evolutionary scenario is therefore a horizontal gene 

transfer between a marine bacterium and an ancestor of 

apicomplexans. Such an ancestor might have shared 

significant similarities with the closely related 

photosynthetic coral symbionts Chromera velia or Vitrella 

brassicaformis [30, 34], and it will be interesting to analyse 

whether these organisms possess Prx5 homologues of 

PfAOP. Corals would actually provide an excellent 

environment for a prokaryote-to-eukaryote gene transfer 

because they act as common hosts for bacterial and 

eukaryotic symbionts. Regarding the bacterial source of 

the apicomplexan Prx5 homologues, Fig. 3 may suggest an 

alphaproteobacterium, however, based on the bootstrap 

values, we cannot exclude another bacterial origin. After 

horizontal gene transfer, the BTS of the Plasmodium 

homologues was presumably acquired by the secondary 

addition of exon1. Such an evolutionary scenario is in 

agreement with a previous report on exon shuffling as a 

likely source for apicoplast targeting in Plasmodium [35]. 

As far as the redox metabolism of P. falciparum is 

concerned, an important implication of the dual 

localization of PfAOP is that the reducing agents 

glutathione and cytosolic glutaredoxin are able to interact 

with PfAOP under physiological conditions in vivo in 

accordance with our previous mechanistic studies in vitro 

[23]. Furthermore, because of its dual localization, PfAOP 

could be a candidate not only for temporal redox sensing, 

as described previously for other peroxiredoxins [18], but 

for spatiotemporal redox sensing in different subcellular 

compartments during the parasite's sophisticated life cycle. 

In conclusion, our studies reveal a dual localization of 

the Prx5 homologue PfAOP in the parasite apicoplast and 

cytosol. The dual localization is reflected by a modular 

gene architecture, which appears to be conserved in 

Plasmodium but not in other apicomplexan parasites. 

PfAOP was not acquired by secondary endosymbiosis but 

presumably results from a gene fusion event after a 

horizontal prokaryote-to-eukaryote gene transfer in a 

marine apicomplexan ancestor. Hence, PfAOP and related 

proteins from Toxoplasma and Neospora form a novel 

subclass of Prx5 homologous with prokaryotic ancestry. In 

addition, PfAOP reflects an intriguing example for the 

addition of a gene by horizontal prokaryote-to-eukaryote 

gene transfer in an otherwise highly economised parasite 

genome. The physiological relevance and the advantage of 

targeting PfAOP to the apicoplast remain to be studied. 

Another aspect noteworthy is that some intracellular 

alphaproteobacterial or gammaproteobacterial pathogens, 

such as Bartonella or Francisella species, do not only 

possess Prx5 homologues that are extremely similar to  the  
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FIGURE 3: Phylogenetic tree 

of the Prx5 gene family. 

Maximum likelihood based 

phylogeny of 84 homologous 

Prx5 protein sequences. 

Bootstrap values are 

indicated in red on top of 

the branches. Posterior 

probability values, based on 

the Bayesian phylogenetic 

analysis are shown in blue 

for the branches shared with 

the maximum likelihood 

tree. Plasmodium sequences 

refer to the second exon of 

the PfAOP gene. 
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apicomplexan homologues, but also share vertebrate host 

cells and arthropod vectors with apicomplexan parasites. It 

might therefore be promising to analyse potentially 

analogous Prx5 functions in these pathogens as well as 

putative pathogen-to-pathogen gene transfers upon co-

infection.  

 

MATERIALS AND METHODS 

Cloning of PfAOP-GFP constructs 

The full-length pfaop gene was PCR amplified from a cDNA 

library of P. falciparum strain 3D7 and cloned into the vector 

pDrive (Qiagen) using the restriction site-containing primers 

fl_PfAOP/pARL/s (5'-GCGCCCATGGTATAAATGAGAATGAGAAG 

AACAATAC-3') and PfAOP/pARL/as (5'-GCGCCCTAGGACCATTA 

CCTAACTGATTATTTTTTAAAAACTCTTTTAC-3'). The truncation 

constructs pfaop
∆Nterm 

and pfaop
BTS

 were amplified from full-

length pfaop using the alternative primers sh_PfAOP/pARL/s 

(5'-GCGCCCATGGCAAAAGAAAATGATCTTATTCCTAACG-3') and 

BTS_PfAOP/pARL/as (5'-GCGCCCTAGGACCATTAGGAATAAGAT 

CATTTTCTTTTATATC-3'), respectively. Potential alternative 

start codons in full-length pfaop were replaced by site-

directed mutagenesis using the primers PfAOP-M71A/M77A/s 

(5'-CGTGAAAGTTGCAATTGACGTAAGAAATGCAAACAACAT ATC-

3') and PfAOP-M71A/M77A/as (5'-GATATGTTGTTTGCATTTCTT 

ACGTCAATTGCAACTTTCACG-3'). Next, an NcoI restriction site 

in the GFP-coding sequence of pfgloI-gfp/pARL [36] was 

removed by site-directed mutagenesis using the primers 

GFP∆NcoI/s (5'-GAAAACTACCTGTTCCTTGGCCAACACTTGTCAC-

3') and GFP∆NcoI/as (5'-GTGACAAGTGTTGGCCAAGGAACAGG 

TAGTTTTCC-3'). The gene pfgloI was subsequently excised 

using AvrII and NcoI, and full length and truncated pfaop was 

cloned into the vector pARL after digestion with the same 

restriction enzymes. Correct sequences of all pfaop-gfp/pARL 

constructs were confirmed by commercial sequencing (MWG 

Eurofins).  

 

P. falciparum culture and transfection 

P. falciparum strain 3D7 was cultured at 37°C according to 

standard protocols [37] using fresh A+ human red blood cells 

at 3% hematocrit in RPMI 1640 medium that was 

supplemented with 0.45% (w/v) Albumax II, 200 µM 

hypoxanthine and 8.9 µg/µl gentamicin. Parasite cultures 

were maintained at 80% humidity, 5% CO2, 5% O2 and 90% N2. 

When necessary, parasites were synchronized using the 

sorbitol method [38]. Transfections were performed as 

previously described [39] using 100 µg of plasmid DNA per 

construct. Parasites were subsequently selected with 5 nM 

WR99210. Transfectants were detected in blood smears 

between two and four weeks post transfection.  

 

Generation and purification of antibodies 

Two rabbit peptide antibodies against residues 79-92 and 208-

226 of PfAOP were generated (Pineda Antibody Service) and 

subsequently purified from sera by affinity chromatography 

using the peptides NH2-CNISDTDGSPNDFTS-CONH2 (αPfAOP-2) 

and NH2-CMFQEKDKQHNIQTDPYDIS-CONH2 (αPfAOP-5) 

according to an established protocol [40]. The purity of the 

eluate fractions was verified by SDS-PAGE and the specificity 

of the peptide antibodies was assessed by immunoblotting 

against lysates of both uninfected and infected red blood cells. 

Preimmune sera served as controls (Fig. S1). 

Live cell imaging 

Live parasites were washed twice with Ringer’s solution (122.5 

mM NaCl, 5.4 mM KCl, 1.2 mM CaCl2, 0.8 mM MgCl2, 11 mM 

D-glucose, 10 mM HEPES, 1 mM NaH2PO4, pH 7.4) and 

visualized using a LSM510 confocal laser scanning microscope 

(Zeiss). GFP fluorescence was detected using an argon laser 

with 3% laser transmission, 40% output, 505-530 nm band 

pass filter and excitation at 488 nm. All images were 

processed with the software ImageJ [41] and are 

representative of at least 20 individual observations for each 

transgenic parasite line. A Gaussian filter of radius 1.0 was 

applied on all images. No gamma correction was performed. 

 

Immunofluorescence analyses 

Indirect immunofluorescence microscopy was carried out as 

previously described [29] using αPfAOP-2 (1:50) and anti-

rabbit Cy3 (1:2000) on either wild-type 3D7 or transgenic ACP-

GFP [42] parasites. Preimmune serum at the same dilution 

gave no signal. Cells were counterstained with Hoechst 33258 

(50 ng/ml) to visualise the nucleus. Fixed parasites were 

imaged on an epifluorescence Zeiss Cell Observer system, z-

stack images were subjected to deconvolution (Zeiss 

Axiovision), maximally projected, converted to 8-bit TIFF 

format, pseudocoloured and overlayed (ImageJ, version 1.48). 

All images presented are representative of at least 20 

individual observations. 

 

Parasite purification and subcellular fractionation 

The subcellular fractionation of P. falciparum infected red 

blood cells was performed as previously described with slight 

modifications [43]. Briefly, parasites at the trophozoite stage 

were purified by magnetic cell separation [44] on a VarioMACS 

column (Miltenyi Biotec) and released from red blood cells 

using 0.1% saponin in PBS (1.84 mM KH2PO4, 10 mM Na2HPO4, 

137 mM NaCl, 2.7 mM KCl, pH 7.4). Freed parasites were re-

suspended in PBS that was supplemented with protease 

inhibitor cocktail (Roche). Parasites were then lysed by five 

freeze-thaw cycles. The obtained homogenate, herein referred 

to as the total parasite lysate, was centrifuged (16,000 g, 60 

min, 4°C) to separate the soluble supernatant fraction (S), 

which represents the cytosolic fraction, from the organelle-

enriched pellet fraction (P). After removal of the supernatant, 

the pellet was washed twice with PBS. The three fractions 

were then mixed with Laemmli buffer supplemented with 30% 

2-mercaptoethanol, boiled for 5 min at 95°C and analysed by 

SDS-PAGE and western blotting. The following primary 

antibodies were used at the indicated concentrations: 

αPfHsp70 (1:1000), αPfCdc48 (1:1000), αPfAldolase (1:5000), 

αGFP (1:2000), αPfAOP-2 (1:100) and αPfAOP-5 (1:200). 

Proteins were detected by chemiluminescence using goat anti-

mouse HRP-conjugated secondary antibody (1:6000, Bio-Rad) 

for PfHsp70 and goat anti-rabbit HRP-conjugated secondary 

antibody (1:10000, Bio-Rad) for all other antibodies. 

 

Phylogenetic analyses and bioinformatics 

All phylogenetic analyses were carried out using 84 

homologous manually selected Prx5 amino acid sequences, 

covering 44 eukaryotes and 40 bacterial species. The first exon 

of the Plasmodium sequences was removed prior to all 

analyses. Multiple sequence alignment was produced using 

MAFFT v7 [45] with the LINSi algorithm and a gap-opening 

penalty of 0.1. Evolutionary model selection was performed 
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prior to phylogenetic inference using ProtTest v3 [46] with 

default parameters, obtaining WAG as the best fitting model. 

Tree inference was carried out using both maximum likelihood 

(RAxML v8 [47], rapid hill climbing algorithm, gamma 

distribution, WAG model, 100 runs and 100 bootstrap 

replicates) and Bayesian approaches (MrBayes [48], 4 chains, 

fixed WAG model, gamma distribution, 4 rates categories, 

5,000,000 generations). A trimmed version of the alignment, 

generated with TrimAl v1.3 [49] and gap threshold of 40%, 

was also evaluated, obtaining no significant differences in the 

topology and bootstrap supports. The relative position of the 

apicomplexan proteins was manually inspected for each of the 

100 bootstrapped trees, obtaining 96 topologies in which the 

apicomplexan proteins were still grouped within the bacteria 

clade, and 4 topologies in which Plasmodium and coccidian 

species were split, the first being grouped as part of the 

eukaryotic clade and the former within bacteria. Similarly, all 

the sub-optimal topologies obtained from 100 RAxML runs 

were evaluated separately, obtaining no trees in which the 

apicomplexan proteins were recovered within the eukaryotic 

clade. Tree hypothesis testing was performed using CONSEL 

[50] on 96 alternative topologies covering all possible 

phylogenetic positions of the apicomplexan clade as a 

monophyletic group with any of the alveolate or algae species 

considered in the tree 

(http://github.com/jhcepas/prx5_supplementary_data). For 

this, 96 constrained topologies were manually generated and 

subsequently optimized using RAxML with the same 

parameters described above. All alternative phylogenies were 

evaluated with CONSEL. The 96 evaluated alternative 

topologies were rejected with P-values < 0.01 (73), < 0.05 (12) 

and < 0.1 (11) using the Approximately Unbiased (AU) test [51]. 

Tree visualization, the generation of constrained tree 

topologies and the inspection of bootstrapped and sub-

optimal tree topologies were performed using ad-hoc scripts 

based on the ETE toolkit [52]. The complete list of topologies 

evaluated, source data, software and scripts are available as 

supplementary data at 

(http://github.com/jhcepas/prx5_supplementary_data). The 

subcellular localization of PfAOP and homologues from other 

alveolates were predicted using a variety of available 

bioinformatics tools including PATS [53], Predotar [54], 

PlasMit [55] and Wolf and iPSORT [56]. 
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