Global translational impacts of the loss of the tRNA modification t⁶A in yeast

Patrick C. Thiaville¹,²,³,⁴, Rachel Legendre⁵, Diego Rojas-Benitez⁵, Agnès Baudin-Baillieu⁴, Isabelle Hatin⁴, Guilhem Chalancon⁶, Alvaro Glavic¹, Olivier Namy⁴,⁵*, Valérie de Crécy-Lagard¹,³,⁴*

¹ Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
² Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610, USA.
³ University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
⁴ Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France.
⁵ Centro de Regulación del Genoma. Facultad de Ciencias – Universidad de Chile, Santiago, Chile.
⁶ Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.

* Corresponding Authors: Olivier Namy, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400; 91400 Orsay, France; E-mail: olivier.namy@igmors.u-psud.fr
Valérie de Crécy-Lagard, Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700; Gainesville, FL 32611-0700, USA; Tel: +1 352 392 9416; Fax: +1 352 392 5922; E-mail: vcrecy@ufl.edu

INTRODUCTION

Modifications of the anticodon stem loop (ASL) of transfer RNA (tRNA) are critical for translational speed and accuracy. As the genetic code is degenerate, most tRNAs decode several codons [1]. Nucleoside modifications ensure that the decoding process is stringent enough to discriminate between closely-related codons and yet relaxed enough to allow decoding of more than one codon [2, 3]. Different organisms use distinct but convergent strategies to optimize speed and accuracy of decoding by modifying specific tRNAs, predominantly at position 34 (the wobble base) and at position 37 (the dangling base) of the ASL (Figure 1A) [2, 3]. Modifications at position 34, such as ncm³U₃₄ (5-carbamoylmethyluridine) or I₃₄ (inosine) can expand decoding capacity, thereby allowing one tRNA to decode three synonymous codons [2–4]. Likewise, most modifications at position 37 are critical for decoding, and their role can be complex. For example, t⁶A₃₇ (N6-isopentenyladenosine) are not determinants for each other’s formation. Our results suggest that t⁶A deficiency, like ncm³U₃₄ deficiency, leads to protein folding defects, and show that the absence of t⁶A led to stress sensitivities (heat, ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally, L-homoserine suppressed the slow growth phenotype seen in t⁶A-deficient strains, and proteins aggregates and Advanced Glycation End-products (AGEs) were increased in the mutants. The global consequences on translation caused by t⁶A absence were examined by ribosome profiling. Interestingly, the absence of t⁶A did not lead to global translation defects, but did increase translation initiation at upstream non-AUG codons and increased frame-shifting in specific genes. Analysis of codon occupancy rates suggests that one of the major roles of t⁶A is to homogenize the process of elongation by slowing the elongation rate at codons decoded by high abundance tRNAs and G₃₄:C₃ pairs while increasing the elongation rate of rare tRNAs and G₃₂:U₃ pairs. This work reveals that the consequences of t⁶A absence are complex and multilayered and has set the stage to elucidate the molecular basis of the observed phenotypes.
promotes decoding activity and increases fidelity of tRNA-Cys at its cognate codon, but also increases the misreading rate of tRNA^Tyr at the near-cognate UGC codon, which makes the effects of this modification on protein expression difficult to disentangle [5]. In fact, the exact in vivo contributions of many ASL modifications to translational robustness are still poorly understood [6].

Codon usage bias allows for fine-tuning of translation by ASL modifications. Codon choice (which codon in a synonymous set is used to encode a given amino acid) affects gene expression levels, protein production, accuracy, protein folding [7–10], and can even be used to predict gene function [11]. Codon usage bias is not only driven by neutral processes such as mutation biases or GC%, but is also molded by selection [9, 12]. Although translation speed is a strong driving force of codon usage [9], the avoidance of codons with higher propensity for protein synthesis errors leading to misfolding is also an important factor in codon selection [13, 14]. ASL modifications play key roles in both these processes [6, 7]. In addition, systems level approach-

![Diagram of tRNA structure](image)

Figure 1: (A) Complex modifications found in the anticodon stem loop (ASL) of tRNA. (B) Codon table with decoding tRNAs, based on Johansson et al. [47]. Blue highlighted cells are decoded by t^6^A modified tRNAs in *S. cerevisiae*. In parenthesis is the number of genomic copies of that tRNA followed by the anticodon (underlined) and base at position 37. Black, grey, and colored circles indicate a codon decoded by that tRNA predicted by the wobble hypothesis, with grey indicating a tRNA less likely to decode that codon, and colors are matching those in Figure 6 and 7. For AUG, four genes code for tRNA^iMet^, and five code for tRNA^eMet^. Modification symbols are from Modomics [44]. Ψ – pseudouridine, & - ncm^3^U, I – inosine, 3 – mcm^3^s^2^U, 1 – mcm^3^U, θ – Gm, ~ – ncm^3^Um, Y – wybutosine, K – m^1^G, 6 – t^6^A, + – i^6^A, and O – 1-methylinosine.
es integrating proteomics, codon usage, and modification profiling [15] have recently shown that tRNA modifications can modulate the expression of specific genes including stress-responsive genes [16, 17]. These tRNA modification tunable transcripts (MoTTs) respond to the proportion of modified tRNAs and regulate translation in response to cellular stress [18].

Threonyl-carbamoyl-adenosine (t^A\(^{\text{A}}\)) is a complex universal modification found at position 37 of nearly all ANN decoding tRNAs, as shown in Figure 1B (for an in-depth review of t^A\(^{\text{A}}\) synthesis in all domains of life, see Thiaville et al. [19]). t^A\(^{\text{A}}\) is formed in a two-step mechanism, where, in the cytoplasm of eukaryotes, the threonyl-carbamoyl-AMP (TC-AMP) intermediate is produced by Tcs1 or Tcs2 (previously named YrdC and Sua5, respectively) [20–22]. TC-AMP is placed on tRNA by the threonyl-carbamoyl transerase complex (TCTC, previously referred to as KEOPS or EKC complex) made up of Tcs3 (Kae1), Tcs5 (Bud32), Tcs6 (Pcc1), and Tcs7 (Cgi121), whereas fungi have an additional member Tcs8 (Gon77) [23–25]. Yeast mitochondria use a minimum synthesis system to produce t^A\(^{\text{A}}\)-modified tRNAs, consisting of a mitochondrial-targeted Tcs2 and Tcs4 (Qr7) [26, 27].

In yeast, the absence of t^A\(^{\text{A}}\) synthesis enzymes has been linked to many phenotypes including telomere shortening [28, 29], transcription regulation defects [30], and respiration deficiency [31–33]. The molecular basis for these pleiotropic phenotypes is far from understood, although it is expected that they should relate to translation defects in absence of t^A\(^{\text{A}}\). In addition to the aberrant misinitiation observed in the TCS2 mutant when the gene was discovered [34], the deletion of the TCS2 and TCS3 results in an increase in +1 and -1 frameshifts, as well as to misinitiation at CUG codons of specific reporter genes [20, 23]. Further studies linked loss of TCS2 with increases in leaky scanning bypass of start codons, +1 frameshifts, readthrough of UAG, UAA, and UGA stop codons, and an increase in internal ribosome entry site translation (IRES-dependent initiation of translation) [33].

Polyamines of TCS2-depleted strains (\(\text{P}_{\text{TCS2}}\)): TCS2, this strain requires doxycycline for expression of TCS2) revealed abnormal ribosome assembly, which could not be rescued by overexpressing the ternary complex (TC; eIF2α, -β, -γ, and Met-tRNA\(^{\text{Met}}\)), contrary to previously reported cases of ribosome assembly defects caused by inhibition of other tRNA modifications [33]. Similarly, the over-expression of either TC or tRNA\(^{\text{Met}}\) (IMT4) did not rescue the slow-growth phenotype in absence of t^A\(^{\text{A}}\) [33]. However, depletion of TCS2 leads to increased levels of the transcriptional activator GCN4, although in a non-canonical manner (Gcd' phenotype) [33]. GCN4 is a positive regulator of genes expressed during amino-acid starvation, and is dependent on eIF2α phosphorylation by Gcn2, which monitors uncharged tRNAs [35,36]. Over-expression of tRNA\(^{\text{Met}}\) or deletion of GCN2 did not reduce the high levels of GCN4 in a TCS2-depletion background [33]. Paradoxically, GCN4 induction in the TCS2-depleted strain was independent of Gcn2 phosphorylation [33]. In yeast, Gcn4 is also regulated at the translational level by four upstream open reading frames (uORFs), where the scanning ribosome initiates translation at the first AUG in the uORF leading to bypass of initiation at the AUG of the downstream ORFs [37]. TCS2-depletion led to increased translation of the main ORF (GCN4) by bypassing the regulatory uORFs [33]. Overexpression of TC or tRNA\(^{\text{Met}}\) did not reduce the leaky scanning seen in TCS2-depletion [33]. Interestingly, mutations of Tcs3, Tcs5, and Tcs8 in yeast also increased GCN4 translation [38].

Evidence has emerged that some tRNA modifications can act as determinants of subsequent tRNA modification enzymes. Recently, the requirements of 2’-O-methylation of C\(_{\text{gly}}\) and N\(_{\text{gly}}\) has been linked to efficient wybutosine formation at m\(_{\text{gly}}\)G\(_{\text{gly}}\) of tRNA\(^{\text{Thr}}\), a circuitry conserved from yeast to man [39–41]. Additionally, in bacteria, presence of the t^A\(^{\text{A}}\) modification increases the efficiency of formation of the essential modification lysidine at U\(_{\text{gly}}\) of tRNA\(^{\text{Met}}\) and t^A\(^{\text{A}}\) is required for the charging of tRNA\(^{\text{Met}}\) by IllS [42, 43]. In yeast, parallels can also be made between t^A\(^{\text{A}}\) and 5-methoxy carbonylmethylionidine (mcm\(_{\text{gly}}\)U) and its thiolated derivative (mcm\(_{\text{gly}}\)S\(_{\text{gly}}\)) found at position 34 of several tRNAs. Both t^A\(^{\text{A}}\) and mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) modify tRNA\(^{\text{Thr}}\), and mcm\(_{\text{gly}}\)U and t^A\(^{\text{A}}\) are found on tRNA\(^{\text{Thr}}\)\(_{\text{gly}}\) [44]. Trn9 and Elp1-6 (Elongator complex) synthesize the mcm\(_{\text{gly}}\) moiety, and the Ncs2/Ncs6 enzymes are responsible for thiolation [45,46]. Deficiencies in mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) synthesis lead to slow growth, the inability to grow on non-fermentable carbon sources, and telomere shortening [45, 47–51], which are similar to phenotypes seen in t^A\(^{\text{A}}\) biosynthesis mutants [20, 23, 29, 33, 34, 38, 52, 53]. Over-expression of a single tRNA, tRNA\(^{\text{Thr}}\)\(_{\text{gly}}\), suppresses all of the mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) phenotypes, and additional data suggest that mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) acts as a codon-dependent regulator of translation [52,53]. Why elimination of mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) or t^A\(^{\text{A}}\) lead to similar phenotypes is unknown [2]. One possibility is that the modification of A\(_{\text{gly}}\) to t^A\(^{\text{A}}\) is required for the formation of the x\(_{\text{gly}}\)S\(_{\text{gly}}\) derivatives, or vice versa, which has never been explored to date.

Recently, both mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) and t^A\(^{\text{A}}\) have been associated to alterations of two central cell regulatory systems; the General Amino Acid Control system (GAAC) through activation of GCN4 [38, 54], which regulates > 1500 genes in response to nutritional cues [35], and Target of Rapamycin Complex (TORC), through alterations in Tor kinase activity [55–58] (reviewed in Thiaville and de Crécy-Lagard [59]). Modulating the levels of t^A\(^{\text{A}}\) in Drosophila through expression of an unmodifiable tRNA\(^{\text{Met}}\) or overexpression of TCS3 led to alterations of Tor activity and changes in whole organism growth [56]. Additionally, knock-down of Tcs3 (Kae1) or Tcs5 (Bud32) in Drosophila larvae activated the Unfolded Protein Response (UPR) [55].

Recent ribosome profiling studies of mutations in the mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) pathway (ncs6A and uba40A) grown under nutrient-depleted conditions revealed pauses and accumulation of ribosomes at GAA, AAA, and CAA codons [54]. Follow up studies also found codon-specific ribosome pausing in the absence of mcm\(_{\text{gly}}\)S\(_{\text{gly}}\) (ncs2elp6A), even in the absence of stress [60]. Hypo-modified tRNAs cause slower decoding at GAA, AAA, and CAA codons that led to protein misfolding and aggregation of essential proteins, which
RESULTS
mcm^5^5^3^U_A or t^A_A, are not determinants for each other’s synthesis

The similarity of the phenotypes observed in strains deficient in mcm^5^5^3^U and t^A synthesis suggests that one of the modifications could be required for the synthesis of the other. To test this hypothesis, tRNAs from wild type (BY4741), mcm^5^5^3^U-deficient yeast strains (elp3A, trm9A, ncs2A, and ncs6A) and t^A synthesis mutants (tcs2A-tcs8A) were purified and analysed by HPLC.

To determine how t^A synthesis deficiency affects mcm^5^5^3^U, HPLC analysis with detection at 313 nm (for detection of thio moieties) of nucleosides of tRNAs purified from elp3A, trm9A, ncs2A, and ncs6A revealed the mcm^5^5^3^U peak at 24.35 minutes, which was unique to BY4741 but absent in all the mutants, and a peak at 14.20 minutes appeared only in elp3A, indicating the presence of the s^U moiety in this strain (Figure 2A). The chromatographic patterns match previously published reports [50].

Analysis of tRNAs purified from t^A_A biosynthesis mutants (tcs2A-tcs8A) revealed that all strains possessed the peak at 24.35 minutes corresponding to mcm^5^5^3^U, and none of the mutants showed the s^U peak at 14.20 minutes (Figure 2B). Interestingly, most mutants in t^A synthesis had higher levels of mcm^5^5^3^U (tcs6A is unchanged) as compared to BY4741, among which tcs7A was the highest (Figure 2B).

The HPLC profile at 254 nm revealed that all the mutants in mcm^5^5^3^U synthesis contained the same amount of t^A as the parental BY4741 strain, as indicated on Figure 2C by a peak at 23.57 minutes. Analysis of the t^A synthesis mutants (tcs2A-tcs8A) confirmed prior results of the absence of t^A in tcs2A and tcs3A [20, 23], and revealed the absence of t^A in both tcs5A and tcs8A (Figure 2D). tcs6A and tcs7A were reduced for t^A relative to wild type by ~20% (Figure 2D), very similar to the reduction seen in a tcs6A mutant in the archaea Haloferax volcanii [61]. These results indicate that mcm^5^5^3^U_A and t^A_A, do not require one another for their synthesis, although eliminating t^A did increase levels of mcm^5^5^3^U.

Overexpression of tRNAs or Ternary Complex (TC) do not suppress the growth defects of tcs2A

Overexpression of tRNA^{A, A, A} is sufficient to suppress all the phenotypes resulting from mutations of mcm^5^5^3^U synthesis enzymes [53]. Therefore, we tested if this was also the case for mutations in the t^A synthesis pathway. To assess if tRNAs could suppress the slow growth rate seen in mutants of t^A synthesis, an expression plasmid containing tRNA^{A, A, A} was transformed into BY4741, tcs2A, tcs3A,

FIGURE 2: HPLC analysis examining the relationship between mcm^5^5^3^U_A and t^A_A. (A) Analysis of mutations in mcm^5^5^3^U_A synthesis with detection at 313 nm specific for thio-moieties. Black line = BY4741; Orange = trm9A; Pink = elp3A; Blue = ncs2A; Green = ncs6A. (B) Analysis of mcm^5^5^3^U_A in mutants for t^A_A synthesis for with detection at 313 nm. Black = BY4741; Green = tcs2A; Blue = tcs3A; Brown = tcs5A; Pink = tcs6A; Orange = tcs7A; Teal = tcs8A. (C) Analysis for t^A_A in mutants of mcm^5^5^3^U_A synthesis with detection at 254 nm. The color scheme is the same as part A, with the t^A_A standard in red. (D) Analysis for t^A_A in mutants of t^A_A synthesis with detection at 254 nm. Color scheme is the same as part B, with the t^A_A standard in red.
tcs5Δ, and tcs8Δ (tcs6Δ and tcs7Δ were not tested as they do not have a growth defect). Unlike in the case of mcm5’s U, the expression of trNA\textsubscript{Lys\textit{UUU}} did not suppress the growth defect observed in t6\textit{A} synthesis mutants (Figure 3). Interestingly, it led instead to a small reduction in growth rate in the mutants (Figure 3). Further, we expressed the other tRNAs that decode ANN codons (trNA\textsubscript{Lys\textit{CUU}}, trNA\textsubscript{e-Met\textit{CAU}}, trNA\textsubscript{Ile\textit{AAU}}, trNA\textsubscript{Ile\textit{UAU}}, trNA\textsubscript{Thr\textit{UGU}}, trNA\textsubscript{Arg\textit{ACG}}, trNA\textsubscript{Arg\textit{UCU}}, trNA\textsubscript{Arg\textit{CCU}}, and trNA\textsubscript{Glu\textit{UUC}} (does not contain t6\textit{A} and decodes GAA, which is the most frequently used codon in \textit{S. cerevisiae})) in tcs2Δ. None of these individual tRNAs suppressed the growth defect of tcs2Δ (data not shown).

To confirm the results of TCS2-depletion published by Lin \textit{et al.} [33], plasmids over-expressing trNA\textsubscript{Lys\textit{UUU}}, eIF2α, or TC were transformed into BY4741 and tcs2Δ. In agreement with the previous results [33], neither trNA\textsubscript{Lys\textit{UUU}}, eIF2α, nor TC suppressed the slow growth of tcs2Δ (Figure S2A), while the growth of tcs2Δ can be restored by expressing TCS2 in trans (Figure S2B).

Hence, unlike the suppression of mcm5’s U by trNA\textsubscript{Lys\textit{UUU}}, neither the overexpression of each ANN-trNA, nor the overexpression of TC components could suppress the fitness defects observed in the t6\textit{A} biosynthesis pathway. The effects of the loss of t6\textit{A} thus appear to be more complex than those of the loss of mcm5’s U.

\textbf{t6\textit{A}-deficient strains are sensitive to heat and inhibitors of TOR, but growth can be partially rescued by L-homoserine.}

To better characterize how the absence of t6\textit{A} was affecting cellular function, growth on several carbon sources and under different stress conditions was tested (Figure 4). t6\textit{A}-deficient strains were found to be sensitive to heat stress, with tcs2Δ unable to grow at 37°C, and to salt stress, with both tcs2Δ and tcs3Δ affected by the presence of 1 M NaCl. Also, tcs2Δ was unable to grow on 3% glycerol or 6% ethanol, but did grow slowly on 2% glucose (YPD), while tcs3Δ was able to grow slowly on all carbon sources (Figure 4). Addition of inhibitors of the TOR pathway such as caffeine (10 mM) [62] or rapamycin (10 nM) further reduced the growth of t6\textit{A}-deficient strains (Figure 4). Interestingly, the addition of L-homoserine (1 mg/ml) partially suppressed the growth defects of the tcs2Δ strain, but not of the tcs3Δ strain. Several other chemical stresses did not affect growth of t6\textit{A} strains (Figure 4). These included the addition of DNA damaging agents such as phleomycin (8 \mu g/ml) or carmustine (1 mM). The elp3Δ strain was also tested in the same conditions as it is known that depending on the strain background, mutants in Elongator genes vary as to the degree of response to each of these stresses [63]. The results presented in Figure 4 are consistent with the results recently published by the Schaffrath laboratory, reporting the lack of strong phenotypes of the elp3Δ strain.

\textbf{FIGURE 4: Stress phenotypes of t6\textit{A}-deficient strains differ from a mcm5’s U-deficient strain.}

Cells were grown at 30°C for 48 hours on YPD with 2% glucose except when 6% ethanol or 3% glycerol was used as a sole carbon source or heat stress at 37°C. Drugs were added to YPD at the following levels: L-homoserine, 1 mg/ml; Rapamycin, 10 nM; Phleomycin, 8 \mu g/ml; caffeine, 10 mM; Carmustine, 1 mM; NaCl, 1 M.
when using the BY4741 background [64]. Homoserine acts as a toxic threonine analogue and incorporation of homoserine acts to protein degradation pathways [65]. To test whether activation of UPR could suppress the growth phenotype of tcs6A-depletion strain in yeast, tcs6A strains were transformed with plasmids expressing UPR factors Xbp1, Kar2 (GRP78/BIP), Der1, and Hrd1. Expression of UPR-related factors were unable to rescue the slow-growth phenotype seen in tcs6A-deficient strains (data not shown).

tcs6A strains accumulate aggregated proteins and advanced glycated end-products (AGEs)

Double mutants elp6Δncs2Δ (eliminating mcm5s2U) have been shown to contain increased amount of aggregated (insoluble) proteins, possibly due to alteration in translation speed [60]. Equal amounts of total and insoluble proteins from BY4742, tcs2Δ, tcs3Δ and elp3Δ were analysed by SDS-PAGE and Coomassie staining. Depletion of tcs6A in tcs2Δ and tcs3Δ increased the amount of aggregated or insoluble proteins similar to the single elp3Δ strain (Figure 5A), which is less than the amount of insoluble protein seen in the double elp6Δncs2Δ strain [60]. Prior experiments in E. coli and H. volcanii revealed that AGEs become more abundant when tcs6A levels are reduced [61,66]. To assess levels of AGEs in our context, equal amounts of total and insoluble proteins from BY4742, tcs2Δ, tcs3Δ and elp3Δ were separated by SDS-PAGE and visualized with a diol-specific silver stain for glycated proteins [67]. Aggregated proteins extracted from tcs2Δ, tcs3Δ, and elp3Δ were all increased in AGEs relative to wild type (Figure 5B).

Ribosome assembly defects are observed in the tcs6A strain

In light of the diverse phenotypes observed and because the previous analysis of translation defects had focussed on a handful of reporter proteins, we performed a global ribosome profiling analysis to assess the impact of tcs6A-deficiency at the genome scale. An essential step in ribosome profiling is ensuring high quality polysomes are prepared, which was assessed by sucrose gradient sedimentation and subsequent analysis with a fraction analyser. Polysomes prepared from tcs2Δ exhibited a “half-mer” phenotype, which is represented by a shoulder after the 80S peak on the chromatograph, blue arrow in Figure S3. Half-mers indicate excess 40S ribosome and incomplete assembly of the 80S particle, which may indicate problems with initiation [68]. The half-mer phenotype of tcs2Δ was not seen in a prior publication examining a TCS2-depletion strain [33]. These results may differ due to strain genotypes or technical differences in the preparation of the polysomes.

The absence of tcs6A leads to increased ribosome occupancy of arginine synthesis genes

A detailed description of purification of the ribosome-protected fragments (RPFs) and sequencing can be found in material and methods. Analysis of RPFs in tcs2Δ revealed 111 genes were decreased in RPFs and 196 genes were increased in RPFs relative to wild type. A complete list of these genes and their functional roles can be found in Table S3 and Table S4. To determine if any functional relationship existed with these genes, we performed gene ontology (GO) enrichment using YeastMine (http://yeastmine.yeastgenome.org) [69]. The pathway for arginine biosynthesis was found to be enriched, $P = 0.049$, with five genes, ARG5, 6, CPA2, ARG7, ARG1, and CPA1 identified. None of the arginine catabolism pathways were significantly increased (Table S4). Increased mRNA expression of arginine has been documented to act as an antioxidant to oxidative stress by an unknown mechanism [70]. This antioxidative pathway acts through pyrroline-5-carboxylate (P5C) but PUT1, encoding a PSC synthesis enzyme, was not increased in RPFs in the mutant (Table S4). Of the 111 genes decreased in RPFs, five genes were identified matching the GO term polyphosphate metabolic process, $P = 0.003$, and no pathway enrichment was identified.

Depletion of tcs6A deregulates GCN4

The number of genes proposed to be regulated by Gcn4 varies greatly with the specific study, from less than 500 genes (microarrays measuring gene expression during histidine starvation) [35] to more than 2500 genes (predicted computationally by SGD). The most conservative estimate of Gcn4-induced genes was produced from a ChIP-Chip assay, which found 128 genes bound during immunoprecipitation of Gcn4 [71]. Comparison of the RPFs detected in tcs2Δ with the 128 well defined Gcn4-regulated genes re-

FIGURE 5: tcs6A deficient strains accumulate aggregated proteins and Advanced Glycated End-products (AGEs). (A) Protein aggregation in BY4742 and mutant yeast cells. Yeast were grown in YPD to an $OD_{600} = 0.8$. Soluble and aggregated proteins were separated by SDS–PAGE and visualized by Coomassie blue staining. (B) AGEs were visualized by silver staining.
veals that 15 ORFs increased in RPFs are regulated by Gcn4 in \(tcs2\Delta \), while no ORFs decreased in RPFs in \(tcs2\Delta \) are regulated by Gcn4, Figure S4A. The 15 Gcn4-regulated genes with increased RPFs in \(tcs2\Delta \) are involved in amino acid synthesis, with six in the arginine synthesis pathway \((P = 1.3 \times 10^{-5})\), Table S5.

Microarray analyses of conditional or point mutations in \(tcs3 \), \(tcs6 \), or \(tcs8 \) had been previously reported [38] and in all these studies, an up-regulation of Gcn4 regulated genes was observed, including genes in the arginine and histidine biosynthesis pathways, although the mRNA expression levels of \(GCN4 \) itself did not increase. The genes increased in each of the previous microarray studies were compared to the genes with increased RPFs in the ribosome profiling analysis of \(tcs2\Delta \). Of the 196 genes with increased RPFs in \(tcs2\Delta \), 29 were also increased in \(tcs3-18 \), 30 were also increased in \(tcs6-4 \), and 12 were also increased in \(tcs18-ts1 \), summarized in Figure S4B. 12 genes were increased in all four datasets (Table 1). 9 of these are under Gcn4 control, of which four are in the arginine synthesis pathway (Table 1).

Contrary to the previous microarray results that did not detect \(GCN4 \) induction, we found that RPFs mapping to \(GCN4 \) were increased 6-fold in \(tcs2\Delta \) (Table S4). This difference may be due to an up-regulation of translation (detected by the increased levels of RPFs in \(tcs2\Delta \)), and not transcription (as measured by the microarrays). With the 6-fold increase in \(GCN4 \) expression, it is surprising so few Gcn4 inducible genes are increased in \(tcs2\Delta \). Indeed, only 8% of RPFs increased in \(tcs2\Delta \) are in common with the Gcn4p ChIP data.

A discrete but not a global increase in translational ambiguity is observed in the \(t^{6}A \) strain \(tcs2\Delta \)

In yeast, the RPF is 28 nucleotides long [72], hence to analyse the frame of each ribosome, only 28-mers that aligned uniquely to the genome and did not contain mismatches were used. 6.5 x 10^6 reads in wild type and 5.8 x 10^6 reads in \(tcs2\Delta \) matched these strict criteria. For each read, the nucleotide at position +12, which corresponds to the ribosomal P-site, was determined and its identity defined the frame of the read, and hence the frame of the ribosome, Figure S5. Each ORF was divided into windows of approximately 300 nucleotides (minimum of 3 windows per ORF to a maximum of 9), and reads inside each window were mapped and enumerated [73]. Since we cannot be sure if the ribosome associated with read is in frameshift or if that ribosome began translation of the ORFs out of frame, translational ambiguity is defined as the mapping of a read in a frame other than the frame of the annotated ORF.

There are four well-documented examples of +1 frameshifts occurring in \(S. cerevisiae \) and these were used to evaluate the frame analysis performed here. One known +1 frameshift, \(TRM140 \) (an AdoMet-dependent tRNA methyltransferase), was detected in both BY4742 and \(tcs2\Delta \) and is illustrated in Figure S6A and B. For translation of full-length Trm140, the ribosome must undergo a +1 frameshift at nucleotide 832. As seen in Figure S6A and B, nearly 100% of the reads begin in Frame 0, then after base 832, nearly 100% of the reads are in the +1 frame.

Table 1. Genes increased in expression in \(tcs2\Delta \), \(tcs3-18 \), \(tcs6-4 \), and \(tcs8-ts1 \).

<table>
<thead>
<tr>
<th>Systematic name</th>
<th>Standard name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YER069W</td>
<td>ARG5,6</td>
<td>Acetylglutamate kinase and N-acetyl-gamma-glutamyl-phosphate reductase*<sup>a</sup></td>
</tr>
<tr>
<td>YER175C</td>
<td>TMT1</td>
<td>Trans-aconitate methyltransferase</td>
</tr>
<tr>
<td>YGL117W</td>
<td></td>
<td>Putative protein of unknown function</td>
</tr>
<tr>
<td>YJL079C</td>
<td>PRY1</td>
<td>Sterol binding protein involved in the export of acetylated sterols</td>
</tr>
<tr>
<td>YJR025C</td>
<td>BNA1</td>
<td>3-hydroxyanthranilic acid dioxygenase*</td>
</tr>
<tr>
<td>YJR109C</td>
<td>CPA2</td>
<td>Large subunit of carbamoyl phosphate synthetase*<sup>a</sup></td>
</tr>
<tr>
<td>YMR062C</td>
<td>ARG7</td>
<td>Mitochondrial ornithine acetyltransferase*<sup>a</sup></td>
</tr>
<tr>
<td>YMR095C</td>
<td>SNO1</td>
<td>Protein of unconfirmed function*</td>
</tr>
<tr>
<td>YMR096W</td>
<td>SNZ1</td>
<td>Protein involved in vitamin B6 biosynthesis*</td>
</tr>
<tr>
<td>YNL104C</td>
<td>LEU4</td>
<td>Alpha-isopropylmalate synthase (2-isopropylmalate synthase)*</td>
</tr>
<tr>
<td>YOL058W</td>
<td>ARG1</td>
<td>Arginosuccinate synthetase*<sup>k</sup></td>
</tr>
<tr>
<td>YOR130C</td>
<td>ORT1</td>
<td>Ornithine transporter of the mitochondrial inner membrane*</td>
</tr>
</tbody>
</table>

*Under control of Gcn4 (see Table S5), ^kArginine biosynthesis.
87 and 213 ORFs were found to have potential translational ambiguities in BY4742 and tcs2Δ, respectively (Table S6 and Table S7). GO term enrichment of these genes with translational ambiguities revealed a single biological process, cytoplasmic translation, was enriched in both strains, with 16 genes in BY4742 (P = 4 x 10^{-6}) and 35 genes in tcs2Δ (P = 3 x 10^{-13}). In tcs2Δ, 17 of the 79 ribosomal proteins had increased levels of translation ambiguities (Table S7).

Interestingly, global analysis of translational ambiguities, by summing all reads used to determine frame, indicates that 80% of all reads from the ribosome profiling are in the correct, annotated frame (Frame 0), but there is a significant difference in translational ambiguities between wild type and mutant (P = 6.5 X 10^{-98}, t-test), Figure S7. Interestingly, only 0.26% of all ORFs were identified as having potential translational ambiguities in tcs2Δ. Thus, the data indicates that loss of t6A is causing ambiguities at discrete sequences, or codons, but is not causing a global, cataclysmic alteration of reading frame.

The number observed non-AUG starts doubles in the t6A-deficient strain
TCS2 (SUA5) was discovered in yeast as a suppressor of a translational initiation defect in the cyc1-362 allele [34]. cyc1-362 contains an aberrant upstream and out-of-frame AUG resulting in ~2% of the normal Cyc1 protein levels. Suppressors would bypass the out-of-frame AUG and initiate at the correct downstream AUG, increasing the amount of Cyc1 [34]. To detect initiation of translation at non-canonical codons, we parsed the profiling data with a strict set of parameters. To be considered a non-canonical start codon, a GUG, UUG, or GUC codons (the most frequently used non-AUG initiation codons in yeast) [74–78] had to be within 100 nucleotides upstream of the ORF of interest, and be in-frame with the downstream AUG with no stop codon between the candidate non-AUG and its downstream AUG. Finally, a minimum of 128 reads was required to cover the non-AUG site.

In yeast, there are two well-characterized occurrences of non-AUG initiation occurring upstream of the annotated AUG start site. ALA1 encodes both the cytoplasmic and

![Figure 6: Translation efficiency of t6A-dependent codons.](image)

FIGURE 6: Translation efficiency of t6A-dependent codons. tAl – tRNA Adaptation Index; nTE – normalized Translational Efficiency; CAI – Codon Adaptation Index. Black and colored circles indicate a codon decoded by a tRNA predicted by the wobble hypothesis, with color matching Figure 1 and 7.
mitochondrial alanyl-tRNA synthetase. The cytoplasmic form of Ala1p is translated from the annotated AUG, and the mitochondrial form is translated from a pair of ACG codons located at -25 and -24 relative to AUG [79]. GRS1 encodes the cytoplasmic and mitochondrial glycyl-tRNA synthase. The cytoplasmic form of Grs1p is translated from the annotated AUG, and the mitochondrial form is translated from a UUG codon located at -26, relative to the AUG [78]. In both BY4742 and tcs2Δ, initiation at the upstream non-AUG codons can be detected for ALA1 and GRS1, Figure S8A and Figure S8B.

The analysis of non-AUG initiation was expanded to the entire profiling dataset. For the three codons analysed, tcs2Δ contain nearly twice as many non-AUG starts as BY4742. For initiation at UUG, BY4742 contained 140 genes, Table S8, and tcs2Δ contained 260, Table S9. For initiation at ACG, BY4742 contained 98 genes, Table S10, and tcs2Δ contained 169, Table S11. For initiation at GUG, BY4742 contained 62 genes, Table S12, and tcs2Δ contained 134, Table S13. None of these sets of genes contained any enrichment of GO terms.

Figure 7: Measurements of ribosome pausing at the A-, P-, and E-sites of tcs2Δ. (A) Codon occupancy. (B) Ribosome residence time (RRT). Black and colored circles indicate a codon decoded by a tRNA predicted by the wobble hypothesis, with color matching Figure 1 and 6.
t^{A}\text{A}'s role in translation speed varies with the codon

Different metrics have been developed to estimate translation efficiencies of individual codons based on the abundance of their cognate tRNAs, and the properties of the ASL they form. There are three major metrics commonly used to measure the translation efficiency of codons: the Codon adaptation index (CAI, [80]), the tRNA adaptation index (tAI, [81]), and the normalized Translational Efficiency (nTE, [82]) (which is based on codon abundance in the transcriptome rather than codon frequency in the genome). Using the three metrics, we found that ANN codons in yeast have in average a higher estimated translational efficiency compared to other codons (Figure 6), suggesting that there is a statistical tendency for ANN-trRNAs to be in high supply in standard growth conditions. The predicted efficiencies vary greatly between ANN codons, with AAG always in high supply while AUA always in low supply (Figure 6).

Ribosome profiling data allows for evaluation of translation speed by measuring codon occupancy at each site in the ribosome, with increased occupancy analogous to a decrease elongation rate, and vice versa. Using two different methods, the Codon Occupancy (CO) [83] and the Ribosome residence time (RRT) [84], a count of every codon occupying the ribosomal A (acceptor), P (peptidyl transfer), and E (exit) sites was compiled. Comparing the Log2 fold-change of CO and RRT in the A, P, and E sites of tcs26 and BY4742 produced a global summary of the consequences of t^{A}A absence on decoding, Figure 7.

The ribosomal A site occupancy for t^{A}A dependent codon site occupancy was increased for AUA, AGG, AGG, AUG, ACA, AAA, and AUA and decreased for AUU, AAG, AUC, AGA, ACU, ACC, and AAG. The codons with increased occupancy in the A-site fell into two categories: (i) codons that are decoded by rare tRNAs (only 1-4 copies of tRNAs genes are encoded in the chromosone) and (ii) codons that are decoded by a G_{2}\text{C}_{1}U_{3} wobble, as for AUU (decoded by tRNA_{AGG}_{[iG]U}) (see Figure 1B for codon:anticodon pairs). The codons whose A-site occupancy decreased also fell into two categories: (i) codons decoded abundant by tRNAs (4-13 genes) and (ii) codons decoded by an I_{3}\text{G}_{1}\text{C}_{2} wobble, as for AUC (decoded by tRNA_{AGG}_{[iA]U}) and ACC (decoded by tRNA_{AGG}_{[ig]U}) (Figure 1B). The pattern found for A-site occupancy, also held true for P-site and E-site occupancies. Interestingly, this pattern also held true for codons decoded by non t^{A}A-containing tRNAs. AGU (G:U wobble) and CGG (decoded by the rare tRNA_{CGG}^{AGG}) were increased in ribosome occupancy, while GUC and GCU (I:C or I:U) were decreased in ribosome occupancy (Figure 7). From this data, it appears that t^{A}A is helping increase elongation rate of rare tRNAs and G_{2}\text{C}_{1}U_{3} pairs and decrease the elongation rate of high abundance and I_{3}\text{G}_{1}\text{C}_{2} pairs to homogenize the process of elongation.

DISCUSSION

The absence of t^{A}A in yeast does not lead to catastrophic and global defects in translation, as would be expected from previous studies based on single reporter assays. Even with doubling of initiation at upstream non-AUG starts and a 2.5 fold increase in translational ambiguities, only a limited number of genes in the yeast genome were affected. This suggests that the severe and pleiotropic phenotypes caused by t^{A}A deficiency may not be caused by global defects in translation, but instead of the subtler consequences of codon-specific translation defects caused by lack of t^{A}A.

Role of t^{A}A in decoding efficiency varies with the tRNA

The codon occupancy results presented in this study suggest that t^{A}A helps rare cognate tRNAs and G:U mismatches (near-cognates) compete with Watson-Crick decoding tRNAs and slows decoding by high abundance tRNAs and tRNAs using the wobble U:C base pairings [85]. This can be all the more critical for codons like AGG decoded by tRNA_{AGG}^{CGG} that are known to be strongly inhibitory for translation efficiency [86–88]. Another important role for t^{A}A is stabilizing the interaction between the first base of the mRNA codon and position 36 (the third nucleoside) of the tRNA anticodon, preventing decoding of near-cognates by tRNA_{AGG}^{M_{i}U}_{AU} [89]. This is exemplified by tRNA_{AGG}^{M_{i}U} of E. coli that contains an unmodified A_{3} and can efficiently decode GUG and UUG while the eukaryotic tRNA_{AGG}^{CGG} contains t^{A}G_{3} and rarely decodes non-AUG codons [90–93]. The examination of alternative start-sites presented here supports the role of t^{A}A preventing tRNA_{AGG}^{CGG} from recognizing near-cognates and restricting translation initiation to AUG codons.

The codon occupancy for non-t^{A}A containing tRNAs is also altered (Figure 7), and this is more dramatic than what is seen in ncs2Δelp6Δ [60]. This could be due to an alteration in competition between cognate and near-cognate tRNAs. This was previously demonstrated for tRNA_{AGG}^{CGG} (tRNA_{AGG}^{CGG}), which naturally exists in t^{A}A modified and unmodified forms [94]. The modified version of tRNA_{AGG}^{CGG} can outcompete the unmodified form for the cognate codon and binds more tightly to tRNA^{M}_{AGG}_{G}_{3} involving a U_{3}\text{G}_{4}G mismatch [94]. CGG codons (decoded by tRNA_{AGG}^{CGG} and UGG codons (tRNA_{AGG}^{CGG} can be decoded in both the codon occupancy and RRT assays (Figure 7). One can speculate that the slower decoding at CGG and UGG is due to competition between tRNA_{AGG}^{CGG} or tRNA_{AGG}^{CGG} with an unmodified near-cognate tRNA_{AGG}^{CGG}.

A recent global analysis of yeast ribosome profiling data has shown that frequent codons are decoded more quickly than rare codons, and AT-rich codons are decoded more quickly than GC-rich codons [84]. It seems that the difference could be even larger if tRNA modifications are altered, as shown here with the absence of t^{A}A, and as is already know for several other ASL modifications. The absence of Queuosine (Q_{3}A) is known to have opposite effects on decoding depending on identity of the 3rd base of the codon [88, 95], and the depletion of mcm5's U synthesis can alter the decoding rates of tRNAs that do not possess this modification [60]. An emerging general trend for the ASL modifications is to homogenize the kinetics of individual tRNA binding (competition) during translation and to alter the speed of translation to ensure proper protein folding, a
Could defects in translation speed cause the pleiotropic phenotypes of t^6A?

Analysis of codon stretches in yeast [20] revealed that the genes with the longest stretches of t^6A-dependent codons encode poly-Asn (poly-N) proteins that contain up to 31 consecutive AAU/AAC codons. These include GPR1, required for glucose activation of the cAMP pathway [97], and SWI1, a subunit of the SWI/SNF chromatin remodelling complex required for transcription of many genes involved in sugar catabolism, as well as meiosis cell mating type (see summary in SGD [98]). If the protein expression of these two genes is reduced in the absence of t^6A (that is a decrease in elongation speed of these transcripts possibly due to stalling), many of the phenotypes seen in t^6A strains (e.g., no growth on galactose, chromatin remodelling defects and telomere shortening [33, 99, 100]) can be explained. Unfortunately, the presence of these repeats (90 nts) are longer than the RPFs (28 nts) sequenced, so these genes could not be analysed in the ribosome profiling and further studies are needed to test this hypothesis.

Several stress-induced transcription factors are also increased in tcs2Δ context, including NSF1 (YPL230W), a transcriptional regulator of genes involved in growth on non-fermentable carbon sources (see summary in SGD [98]), Sol4 (YGR248W), which functions in the pentose phosphate pathway (see summary in SGD [98]), and Smc6 (YLR383W), a component of the SMC5-SMC6 complex that plays a key role in the removal of X-shaped DNA structures (see summary in SGD [98]) (Table S4). Up-regulation of any of these transcription factors would have wide-ranging effects and could explain some of the pleiotropic phenotypes seen under t^6A deficiency.

Ribosome profiling of ncs2Δ revealed genes with increased translation activity tend to play a role in amino acid metabolism, and GCN4 is significantly increased [54]. Comparison of genes increased in tcs2Δ and ncs6Δ revealed 19 genes found in each of these mutants, Table S14. Increased genes included GCN4 and several members of the arginine biosynthesis pathway, Table S14. Twelve genes are decreased in both tcs2Δ and ncs6Δ, including two ribosomal protein subunits and two phosphatases, Table S15. GCN4 is also increased in the ribosome profiling of ncs2Δelp6Δ [60]. A common theme seen in disrupting ASL modifications is the de-repression of Gcn4, in a non-canonical Gcn2-independent manner, activating a small subset of Gcn4 regulated genes. The mechanism of activation and the importance of Gcn4 activation are not understood at this point in time.

FIGURE 8: Model for the cellular response to reduction of t^6A. (1) Reduction of threonine lowers the level of t^6A and (2) decreases the activity of the master controller Tor, which reduces anabolism and the growth potential of the cell through multiple pathways. (3) ~300 proteins only use t^6A encoding tRNAs for arginine. (4) Potential outcomes of increased translation ambiguities seen in the absence of t^6A.
Restoring protein homeostasis suppresses the slow growth of tcs2Δ

An explanation for the similarity of phenotypes seen in both Elongator and t6A mutants could be due to the disruption of protein homeostasis. Unlike the mutations in the Elongator modification, the slow growth observed during disruption of t6A biosynthesis cannot be suppressed by overexpression of tRNAs (Figure 3). However, L-homoserine rescued the growth of tcs2Δ, but not tcs3Δ (Figure 4). Further studies are required to explain this suppression, but homoserine is a toxic intermediate, which acts as a threonine analogue, and it was recently shown that the ubiquitin pathway and the proteasome are crucial in alleviating homoserine toxicity [65].

Model for the cellular response to reduction of t6A

To date, tcs2 and members of the TCTC complex have been implicated in transcriptional regulation. While there is no empirical evidence eliminating this possibly, the evidence presented here and in other works suggests transcriptional changes seen when perturbing t6A biosynthetic genes are part of an adaptive response by the cell to cope with translational errors. The response to alterations in t6A levels involves a combination of both independent and interrelated events, summarized in Figure 8. The model proposes that t6A acts as a sensor of nutritional levels as t6A varies in response to the availability of threonine, Figure 8-1 [101]. As t6A levels decline, Tor1 activity decreases, Figure 8-2 [56]. As a master controller, declines in Tor1 activity reduce the growth potential of the cell [55, 56, 102] and has been reviewed in [106]. Using the codon usage database [107], a reduction in t6A may also lower the translation rate of specific proteins due to codon usage, Figure 8-3. Arginine is one of two amino acids in yeast that are incorporated both by t6A-containing tRNAs (AGA/G codons) and by tRNAs lacking t6A (CGN codons), Figure 1B [44]. The AGA/G codons are known to be frequent sites of frameshifting, reviewed in [106]. Using the codon usage database [107], yeast genes were ranked according to their use of t6A-dependent or t6A-independent Arg codons. Around 300 genes used only t6A-dependent Arg codons and GO analysis showed a strong enrichment for genes of the aerobic respiration and electron transport pathways (P-value 10^-9, Holm-Bonferroni test), which could explain the respiratory deficiency phenotype displayed by t6A yeast strains (Table S16 and S17). 23 ribosomal proteins, RNA Polymerase subunits (RNAP), and proteins of the chromatin remodelling complexes H2A and H2B use t6A-dependent Arg codons. Only 12 of these t6A-dependent Arg genes were decreased in RPFs in tcs2Δ. Proteomic studies are now underway to confirm if this specific set of genes are translated less efficiently in the t6A strains.

As t6A levels decrease, translation fidelity decreases (Figures S7, S8 and Tables S6-13). Increase in translation ambiguity could lead to new protein products, which may be non-functional or toxic [108]. Out-of-frame decoding could increase synthesis of small peptides [108] and misfolded proteins could lead to the activation of the unfolded protein response (UPR) [55], and to the activation of catabolic pathways [109, 110], Figure 8-4. Additional proteomic studies are underway to measure misfolding and amino acid misincorporation rates in t6A strains to further characterize these multi-layered and complex phenotypes.

MATERIALS AND METHODS

Strains and growth conditions

A list of all organisms used in this study can be found in Table S1. Yeast strains were grown on YPD (DIFCO Laboratories) at 30°C. Synthetic minimal media (SD), with or without agar, with or without dropout supplements (-uracil, -ura; -leucine, -leu; -histidine, -his) were purchased from Clontech (Palo Alto, CA) and prepared as recommended by the manufacturer. Glucose (Glu, 2% w/v), Glycerol (Gly, 4% w/v), Ethanol (EtOH, 6% v/v) 5-fluoro-otic acid (5-FOA, 0.1% w/v) and G418 (300 µg/mL) were used when appropriate. Yeast transformations were carried out using frozen competent cells as described by [111] with plating onto the appropriate media. The S. cerevisiae tcs2Δ:KanMX4 strain, VDC9100, was created as previously described [27]. All strains were genotyped using oligonucleotides targeting inside and outside the gene of interest, in addition to the location of the replacement cassette. Oligonucleotides are listed in Table S2. VDC9100 (tcs2Δ) harboring tRNA over-expression plasmids were created using the plasmid shuffle technique by first transforming with pBN204 (TCS2 complementation plasmid), then transforming with tRNA plasmids, and finally curing pBN204 from VDC9100 using SD-leu+5-FOA media.

Yeast growth assays

Growth curves were performed using a Bioscreen C MBR (Oy Growth Curves AB Ltd, Finland) at 30°C and at maximum shaking. A 250 µl culture was used in each well, and 5 biological replicates were used for each condition. Yeast cultures were grown in the listed media to saturation, normalized to an OD600 of 1, and diluted 200 times in the listed media before loading on the Bioscreen. The growth curves presented are averages of 5 biological replicates. Significance was determined using a 2-way ANOVA and Fisher’s LSD using Prism 6 (GraphPad).

For phenotype screens and tRNA over-expression assays, yeast cultures were grown in the media listed in the figure to saturation, normalized to an OD600 of 1.0 and 5 µL of 1:10 serial dilutions were spotted on the listed media with the supplements listed in the figure and text. Galactose (2% w/v) was added when needed.

Extraction and digestion of bulk tRNAs

Bulk tRNAs were prepared as previously described using acid buffered-phenol (phenol saturated with 50 mM sodium acetate, pH 5.8) and alcohol precipitation [20]. Nucleosides were prepared as described in [61] by hydrolyzing bulk tRNA with 10 units of Nuclease P1 (Sigma) overnight at 37°C, with the addition of 0.01 units of phosphodiesterase I (Sigma) and 3 µL E. coli alkaline phosphatase (Sigma). The hydrolyzed nucleosides were further purified by filtering through a 5 kD MWCO filter (Millipore) (to remove enzymes), dried in a CentriVap Concentrator, and suspended in 20 µL of water prior to analy-

HPLC and LC-MS/MS Analysis

t\(\text{A}\) was detected by HPLC as described by [112] using a Waters 1525 HPLC with Empower 2 software and detected with a Waters 2487 UV-vis spectrophotometer with simultaneous detection at 254 nm and 313 nm (for thio-derivatives). Separation was performed on an Ace C-18 column heated to 30°C, using 250 mM ammonium acetate (Buffer A) and 40% acetonitrile (Buffer B) run at 1 mL/min. 100 µg of nucleosides were injected and separated using a complex step gradient [112]. Levels of t\(\text{A}\) were measured by integrating the peak area from the extraction ion chromatograms. The ratio of t\(\text{A}\)-modified base/m\(\text{A}\) was used to normalize to tRNA concentration across samples. Levels for mutant strains were related to wild type levels. Results were confirmed by LC–MS/MS at the IMAGIF (Centre de Recherche de Gif-sur-Yvette, France) and the manufacturer’s protocol and verified using Bioanalyzer Small RNA Analysis kit (Agilent). Sequencing was performed at the Microarray and Genomic Analysis Core Facility at the University of Utah Huntsman Cancer Institute on an Illumina HiSeq 1500 and subjected to a 50 cycle run.

Ribosome profiling

Purification of RPFs and Library Preparation

Ribosome Profiling was performed as described previously by Baudin-Bailieu et al. [113, 114]. Briefly, polysomes were prepared from two biological replicates of the parental BY4742 strain and tcs2\(\Delta\) (VDC9100) grown from a preculture diluted into 500 mL YPD in an Erlenmeyer flask. Cells were collected at OD\(\text{A}_260\) 0.6, chilled on ice, and cycloheximide was added to a final concentration of 50 µg/mL. Polysomes were harvested in cold lysis buffer (0.1 mM Tris–HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl\(_2\), and 50 µg/mL cycloheximide), and were aliquoted at approximately 40-50 OD\(\text{A}_260\) units per tube and rapidly frozen in liquid nitrogen and stored at -80°C. Monosomes were prepared by digesting polysome extracts for 1 hour at room temperature with 15 units RNaseI (Ambion) per OD unit. Digests were purified on an Ace C-18 column heated to 30° C, detection at 254 nm and 313 nm (for thio-derivatives). Separation was performed on an Ace C-18 column heated to 30° C, detection at 254 nm and 313 nm (for thio-derivatives). The ratio of t\(\text{A}\)-modified base/m\(\text{A}\) was used to normalize to tRNA concentration across samples. Levels for mutant strains were related to wild type levels. Results were confirmed by LC–MS/MS.

Functional Classification of Genes

Lists of genes produced from the above analysis were analysed using YeastMine [69], an interactive database for querying the Saccharomyces Genome Database (SGD, www.yeastgenome.org) [69] to produce Gene Ontology enrichments and pathway enrichments.

Detection of protein aggregates and AGEs

Proteins were extracted from cells grown to mid-log and total proteins were extracted as described in [121]. Aggregates were isolated as described by [122]. Total proteins and aggregates were separated on 4-20% denaturing polyacrylamide gels with Coomassie blue staining. AGES were identified by diol-specific silver staining [67].

Acknowledgments

This work was supported by the National Institutes of Health (grant number R01 GM70641 to V.d.C-L.), by FONDECYT 1140522 and FONDAP 15090007 grants to A.G., and CONICYT grant AT24121519 to D.R.B. P.C.T. was supported in part by a Chateaubriand Fellowship from the French Embassy in the United States. RL was supported by a grant from ANR N° 11-
REFERENCES

CONFLICT OF INTEREST

The authors declare no conflict of interest.

COPYRIGHT

© 2015 Thiaville et al. This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged.

OPEN ACCESS | www.microbialcell.com

