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Yeast screening platform identifies FDA-approved drugs 
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The older the average person alive today becomes, the 

more instances of neurodegeneration are observed world-
wide. Alzheimer's disease is the most common neuro-
degenerative disorder preferentially affecting older indi-
viduals with 26.6 million cases recorded in 2006. It is esti-
mated that worldwide prevalence will rise to 100 million 
cases by 2050 [1]. There is currently no effective treatment 
nor preventative therapy for Alzheimer's disease, and no 
definitive diagnosis besides post-mortem pathology. Diag-
nosis is based on the presence of intracellular inclusions of 
hyperphosphorylated microtubule associated protein tau 
and extracellular plaques consisting of amyloid beta (Aβ) 
peptide [2]. Aβ is a small peptide 40-42 aa in length, 
formed via amyloid precursor protein (APP) cleavage that 
results in Aβ release into the extracellular space. Aβ is 
normally observed circulating in the cerebrospinal fluid of 
mammals, and is produced mostly in the central nervous 
system [3]. Although Aβ aggregates are the major patho-
logical hallmark of Alzheimer’s disease, the mechanisms of 
Aβ induced neurotoxicity is not well understood, and even 
less is known about the physiological function of Aβ pep-
tide. Absence of APP results in embryonic development 
defects due to irregular migration of cerebral cortex neu-
rons [4]. Recent work also indicates that Aβ peptide con-
centrations in the CNS modulate synaptic transmission and 
synaptic hyperactivity via direct binding to APP [5].  

In addition to the pathological connection between Aβ 
deposition and Alzheimer’s, a genetic connection has been 
mapped as well. Multiple mutations in APP and its cleaving 
enzymes increase the risk of Alzheimer disease onset [6-8]. 
Some mutations alter the cleavage of APP, resulting in a 
shifted ratio of Aβ1-42 to Aβ1-40, thus increasing the pro-

portion of the more aggregation-prone species. Other mu-
tations affect the aggregation propensity of the Aβ1-40/42 
peptide itself [9]. As with another aggregation-prone dis-
ease associated protein, α-synuclein in Parkinson’s disease, 
an increase in Aβ production results in its aggregation and 
the early onset of Alzheimer’s disease [10].  

While most models of Aβ cellular pathology assume 
that toxicity stems from its aggregation propensity [11], 
there has been vigorous debate about whether the toxicity 
stems mostly from extracellular high-molecular weight 
amyloid plaques, or mostly from the low molecular weight 
oligomers [12-14]. Aβ can be re-incorporated into the cy-
toplasm after extra-cellular cleavage, and much evidence 
has accumulated over the past several years that favors 
the small intracellular oligomers as the toxic aggregate 
species [15]. Particularly convincing are seminal studies in 
simple models of disease: C. elegans and mice, demon-
strating a link between aging, insulin signaling, and toxicity 
driven by low molecular weight oligomers of Aβ [16-18]. 
Another study, modeling Alzheimer's disease in mice, 
showed that cognitive impairment precedes mature fibril-
lar deposits [19].  

Due to the multifaceted and multifactorial nature of 
Alzheimer’s physiology, no single model can fully recapitu-
late disease. Mice are currently the model system that 
most closely resembles human beings while still being ca-
pable of exhibiting features of aging on a time-scale in line 
with the duration of a typical PhD or postdoc. Mice can 
also be scored for learning and memory defects, as well as 
motor neuron function. However, it is equally the case that 
a mouse that is artificially expressing extremely high 
amounts of Aβ in its brain will not accurately recapitulate 
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the memory neuronal circuits of a 75-year-old human be-
ing. At the same time, mammalian models are sometimes 
less tractable and may offer less molecular and cellular 
detail of pathology and toxic events.  

Simpler models of Aβ toxicity have been exploited with 
tremendous success towards greatly improving our under-
standing of the cellular pathology of molecular events as-
sociated with Alzheimer’s, as well as other neurodegenera- 
tive diseases. Of these, one of the most flexible, tractable, 
and versatile models has been the yeast Saccharomyces 
cerevisiae [20-24]. One of the things that make yeast such 
an important model for studying aggregation toxicity is 
that aggregation-prone, disease-associated proteins that 
would normally kill any mammalian cell are usually only 
mildly toxic in yeast. This suggests that yeast have efficient 
mechanisms for avoiding the aggregate toxicity that many 
human cells, and especially neurons, eventually succumb 
to. These mechanisms can be investigated in yeast with the 
hope of eventually exploiting them to address human pa-
thology.  

Another enormous advantage of yeast is the ease with 
which they can be used for high-throughput and high-
content screening of genetic components of disease-
associated molecular processes, as well as small molecule 
modulators of toxicity. Using a variety of high-throughput 
screening approaches several groups have identified genet-
ic modifiers of α-synuclein toxicity [21, 25], ALS-associated 
pathology [26], as well as Alzherimer’s-associated aggrega-
tion [27]. Similarly, a number of promising small molecular 
modifiers of Parkinson’s cellular pathology [20] have been 
discovered through yeast screening.  

Recently, Park and colleagues working in Susan Lieb-
man’s group discovered a number of small molecules ca-
pable of modulating Aβ aggregation in a yeast model [28]. 
The group constructed an Aβ fused to a translation factor 
domain to assess the Aβ oligomerization with a simple 
growth assay [29]. Park et al. screened 1200 FDA-approved 
drugs for the effect on Aβ oligomerization using a novel 
approach developed by the group earlier [28]. The study 
uncovered 7 well-known compounds able to reduce oli-

FIGURE 1: Yeast provide insight into molecular pathogenesis of Alzheimer disease and reveal modifiers of amyloid beta toxicity. 
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gomerization and rescue cellular toxicity in yeast (Fig. 1). 
These molecules were then shown to alleviate the toxic 
effects of Aβ aggregation in cultured mammalian cells, 
partially validating the yeast screen hits. 

The molecules identified by the Liebman group show 
promise in that their molecular mechanism seems to in-
volve modulating the small oligomers, thought to be the 
toxic species in the long chain of events leading to Aβ tox-
icity in the brain [28]. All of the molecules identified have 
already been approved by the FDA for use in humans, sig-
nificantly accelerating any potential drug-to-market time-
line. The next step would be a direct test in an animal 
model of Alzheimer’s disease. In a promising precedent, a 
previous study describing novel targets for Parkinson’s 
disease in yeast has already proven to rescue neurons [21], 
illustrating the similarity and conservation in cellular re-
sponse to amyloid aggregation, and the nearly unlimited 
utility of budding yeast to humanity[30].  
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