Supplemental Data

Construction and evaluation of yeast expression networks by database-guided predictions

Katharina Papsdorf^{1,*}, Siyuan Sima^{1,*}, Gerhard Richter², Klaus Richter^{1, 3}

¹ Center of integrated protein science at the Technische Universität München, Department Chemie, Lichtenbergstr. 4, 85748 Garching

² address: <u>gerhard.richter@richterlab.de</u>.

³ corresponding author: ,+49 89 289 13342, <u>klaus.richter@richterlab.de</u>,

* Contributed equally to this work

Table S1 Publicly available datasets used in this study.

Microarray Set	Collection	Column name Condition	Column in PCL-File
[25]	GSE5499_set0_family.pcl	HSF1 overexpression mutant vs. Empty vector , replicate 1	35
[24]	2010.Gasch00_HS25- 37.flt.knn.avg.pcl	heat shock 40 min; src: time zero<->40 min	6
[34]	GSE32703_final.pcl	3 μM 1-NM-PP1 treatment for 40 min6	6
[35]	GSE8718_setA_family.pcl	5uM thiuram 1st	7
[36]	GSE9337_setA_family.pcl	87-86-5 Pentachlorophenol 1st	13
[37]	GSE9401_setA_family.pcl	7553-56-2 lodine, 1 mM 2 h (time course) 1st H	22
[33]	GSE6302_set00_family.pcl	WT BY4741- glycerol vs. glucose at log phase- #1	1
[26]	GSE7525_set0_family.pcl	S.cerevisiae_alpha_factor_ 60min_repeat1	1
[38]	GSE11397_setA_family.pcl	wild-type +/- rapamycin, replicate 1	3
[27]	GSE23580_final.pcl	Wild type no vs high Pi conditions Replicate 1	49

Table S2 GO-Terms and transcription factors of isolated clusters compared to the full

gene hit list.

Experiment	Cluster	GO-term	p-value		p-value	Trans cripti on factor	p-value		p-value
	1 down 1	Hexose transport	1.16E-10	s	8.33E-01	Yap6	6.3679E-06	all genes	3.10893E-5
		Monosaccharide transport	1.16E-10	ll gene	8.33E-01	Azf1	0.0010787		0.51814
	ISH	Carbohydrate transport	3.81E-09	e	8.28E-01	Sko1	0.001479		0.047044
	2	cellular respiration	1.05E-26		3.16E-04	Нар3	4.579E-08	all genes	0.023536
ression	Hsf1 down	generation of precursor metabolites and energy	4.46E-24	all genes	1.13E-02	Hap5	8.8838E-08		0.087763
		energy derivation by oxidation of organic compounds	6.76E-23		1.73E-03	Hot1	5.9425E-07		0.021446
	Hsf1 down 3	mitochondrial translation	4.38E-21	all genes	4.10E-01	Srd1	0.006218	all genes	n.r.
verex		mitochondrion organization	2.95E-16		1.00E00	Tos4	0.008018		0.021250
Hsf1 (translation	5.11E-14		1.00E00	War1	0.014052		n.r.
	Hsf1 down 4	cell wall organization or biogenesis	1.86E-01	all genes	1.00E+00	Mbp1	1.9632E-05	all genes	0.154289
		cell cycle	9.78E-01		1.00E+00	Skn7	1.0473E-4		0.045750
		n.r.	-		-	Yap6	0.000144		3.1089E-5
	1	Protein folding	1.03E-22	all genes	1.25E-03	Spt23	0	all genes	3.73503E-5
	sf1 up	Protein refolding	9.47E-16		2.45E-01	Hot1	1E-14		8.96635E-5
	н	Response to heat	4.19E-15		1.53E-02	Hsf1	7.4851E-11		0.0046591

Experiment	Cluster	GO-term	p-value		p-value	Trans cripti on factor	p-value		p-value
	Ļ -	cytoplasmic translation	1.27E-15	s	1.00E00	Spt23	0	s	4.21814E-6
	at dowr	translation	1.50E-11	ll gene	1.00E+00	lfh1	5.4592E-11	ll gene:	0.147782
	He	peptide biosynthetic process	1.82E-11	а	1.00E+00	Fhl1	4.9964E-08	а	0.895949
k	n-2	ribosome biogenesis	1.70E-76	s	1.29E-26	Sko1	0.010787	S	0.517678
eat sho	at dow	ribonucleoprotein complex biogenesis	6.93E-70	ll gene	3.47E-23	Pog1	0.011101	ll gene	0.040548
Не	He	rRNA processing	3.93E-54	а	2.21E-17	Spt23	0.011484	a	4.21814E-6
	Heat up-1	cellular carbohydrate metabolic process	2.75E-06	ŝ	1.00E+00	Hot 1	0	all genes	4.2E-10
		carbohydrate metabolic process	6.07E-06	all gene	3.22E-01	Spt23	0		1.529120E-4
		trehalose metabolic process	9.67E-06		1.00E+00	Adr1	1E-15		1.007430E-4
	wn 1	cytoplasmic translation	3.97E-84	all genes	7.39E-24	Rap1	0	all genes	0.08508
	ose do	translation	8.47E-71		8.73E-20	Fhl1	0		5.64798E-7
	Gluo	peptide biosynthetic process	2.21E-70		1.55E-19	Spt23	0		0
lycerole	wn 2	organonitrogen compound metabolic process	1.54E-17	s	4.05E-27	Spt23	1.017E-05	all genes	0
e vs G	ose dc	cellular amino acid metabolic process	8.39E-17	ll gene	1.33E-06	Tos4	0.004078		0.31081
Glucose	Gluce	organonitrogen compound biosynthetic process	1.01E-16	а	6.13E-27	Met28	0.007469		0.01428
	р 1	oxidation-reduction process	6.39E-21	l genes	9.93E-07	Adr1	0	all genes	6.780E-12
	icose n	cellular carbohydrate metabolic process	1.97E-13		3.22E-03	Hot1	0		1.00 E-13
Gluc	Glu	carbohydrate metabolic process	1.98E-11	а	7.52E-03	Sko1	0		2.125E-12

Experiment	Cluster	GO-term	p-value		p-value	Trans cripti on factor	p-value		p-value
	Phosphate down 1	cellular amino acid biosynthetic process	7.33E-20		2.51E-01	Gcn4	5.0337E-05		0.999997
		organic acid biosynthetic process	3.08E-18	genes	2.90E-01	Arg81	5.5629E-4	all genes	0.288809
		carboxylic acid biosynthetic process	3.08E-18	all	2.90E-01	Dal81	7.186E-4		0.012801
	wn 2	mitochondrial translation	2.74E-46		1.80E-10	Srd1	0.00392	all genes	n.r.
	nate do	mitochondrion organization	3.23E-42	genes	1.03E-08	War1	0.01266		0.225037
Phosphate starvation	Phosph	translation	3.13E-30	all	5.41E-04	Pog1	0.01559		0.251731
	Phosphate down 3	ATP metabolic process	1.53E-24	ll genes	1.00E00	Нар3	0	all genes	0.035357
		purine ribonucleoside triphosphate metabolic process	3.29E-24		8.60E-01	Hap5	0		0.086808
		purine nucleoside triphosphate metabolic process	4.78E-24	а	1.00E00	Hap4	0		0.699949
	Phosphate up 1	phosphorus metabolic process	4.78E-05	III genes	3.29E-03	Pho4	4.5736E-08	all genes	8.1619E-4
		polyphosphate metabolic process	7.46E-05		3.39E-04	Met32	3.521 E-4		1.0711E-5
		dephosphorylation	4.70E-04	g	1.33E-01	Pdc2	0.002122		n.r.
	up 2	response to oxidative stress	5.96E-10	S	1.00E00	Sko1	0	all genes all genes	2.1695E-6
	sphate	cellular response to oxidative stress	5.68E-09	all gene	1.00E00	Hot1	0		3.79E-8
	Phos	trehalose metabolic process	3.41E-07		1.00E00	Spt23	1.082E-12		3.3663E-9
	up 3	iron ion homeostasis	3.14E-23	S	4.10E-06	Put3	0		0.003282
	sphate	transition metal ion homeostasis	5.57E-23	ll gene	1.71E-04	Aft1	9.055E-11		0.45898
Phosp	Phos	metal ion homeostasis	2.14E-21	а	1.13E-04	Aft2	6.3309E-09		0.09137

Experiment	Cluster	GO-term	p-value		p-value	Trans cripti on factor	p-value		p-value
ate on	t up 4	purine-containing compound biosynthetic process	1.08E-12	Se	1.00E00	Cad1	2.026E-09	SS	0.01664
hospha tarvatio sphate	sphate	de novo' IMP biosynthetic process	1.97E-11	all gene	1.00E00	Yap5	5.7289E-09	ull gene	0.12502
Ч s	oyd	purine nucleotide biosynthetic process	5.20E-11	.0	1.00E00	Yap6	8.34E-05	.0	1.94075E-5

Clusters were manually picked with Cytoscape [23]. The isolated clusters are indicated in the corresponding figure in the main manuscript. The genes within the clusters and the full hit list were analyzed. The GO-terms of the biological process were retrieved via the PANTHER algorithm [30] and the transcription factor via the YEASTRACT web service [31]. The p-values were retrieved within this analysis. 0= value below 0.0 E-15, n.r. = not retrieved.

Figure S1.

Random

Q56

LAC1

Figure S2

Figure S3

A HSF-1 overexpression

Heat up 1

Figure S1. Visualization of networks with different connectivity.

The *top100* regulated genes of different datasets were processed in ClusterEx and visualized in Cytoscape. Connectivity is retrieved by obtaining 20 *coregulators* as described in Figure 1. The edge-weighted spring embedded layout is used to position highly connected genes in close proximity. Genes are colored is different shades of blue (downregulation) or red (upregulation) according to their experimental log differences. A) Random network of 100 genes. Random genes colored with expression values retrieved from the Q₃₀ dataset were connected into a network. B) The *top100*-genes of the Q₃₀ downregulated hit list were fit into an interconnected network. C) The *top100*-genes retrieved from the Q₅₆ downregulated hit list were fit into an interconnected network and color coding was used as depicted in the log scalebar.

Figure S2. Connectors can be added to the network to evaluate clustering.

Strongly connected genes from the same transcriptional clusters which are not part of the initial hit list (called *connectors*) are included into the network. *top100*-hits were connected with 20 *coregulators* and 10-100 *connectors* were obtained from the matrix and included into the network. A) Shown is the percentage of integration of the original hits into the network, depending on the number of *connectors* added to the network. B) Shown is the number of connectors added to the network.

Figure S3. Visualisation of networks upon Hsf1-overexpression and heat stress in yeast.

The *top100* hits of different datasets were processed in ClusterEx and visualized in Cytoscape. Connectivity is retrieved by obtaining 20 *coregulators* for each hit from SPELL and increased by including 50 *connectors* as described. The edge-weighted spring embedded layout is used to position highly connected genes in close proximity in Cytoscape. Genes are colored according to their log differences in the respective experiments. Clusters which are further analyzed for their GO-terms via PANTHER and for their transcription

factors via the YEASTRACT web service are marked with black boxes. A) Genes differentially regulated in *S. cerevisiae* upon Hsf-1 overexpression [25] were built into an interconnected network. The *top100*-hits (black frame) and 50 *connectors* (grey frame) were included into the network from the coregulation matrix. Upper panel: downregulation, lower panel: upregulation. B) Genes differentially regulated in *S. cerevisiae* upon heat stress [24] were built into an interconnected network. The *top100*-hits (black frame) and 50 *connectors* (grey frame) were from the matrix and included into their network. Upper panel: downregulation, lower panel: upregulation, lower panel: upregulation, lower built into an interconnected network. The *top100*-hits (black frame) and 50 *connectors* (grey frame) were derived from the matrix and included into their network. Upper panel: downregulation, lower panel: upregulation

Figure S4. Biological processes and transcription factors of isolated clusters.

Clusters are marked in Cytoscape as indicated in the corresponding figures (Figure 3, 8, 9). The gene-ontology term (GO-term) biological process of the genes (upper panel) and the transcription factors regulating the genes (lower panel) of the isolated clusters (blue) and the full gene hit list (red) are depicted. The full analysis is listed in Table S1 and described in the material and method section. The negative log of the p-value of the three highest ranking terms of the cluster analysis and the corresponding values of the full hit lists analysis are depicted. The red line represents p-value of the highest ranked GO-term or transcription factor analyzing the all genes in the network. - = analysis did not yield in any significant results.