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ABSTRACT The mitochondrial genome is responsible for the production of a
handful of polypeptides that are core subunits of the membrane-bound oxi-
dative phosphorylation system. Until now the mechanistic studies of mito-
chondrial protein synthesis inside cells have been conducted with inhibition
of cytoplasmic protein synthesis to reduce the background of nuclear gene
expression with the undesired consequence of major disturbances of cellular
signaling cascades. Here we have generated a system that allows direct moni-
toring of mitochondrial translation in unperturbed cells. A recoded gene for
superfolder GFP was inserted into the yeast (Saccharomyces cerevisipmito-
chondrial genome and enabled the detection of translation through fluores-
cence microscopy and flow cytometry in functional mitochondria. This novel
tool allows the investigation of the function and regulation of mitochondrial
translation during stress signaling, aging and mitochondrial biogenesis.
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INTRODUCTION

In Saccharomyces cerevisidbe mitochondrial genome
encodes eight proteins of which seven are membrane pr
teins and core subunits of the oxidative phosphorylation
system (OXPHO@®$)]. Respiratory activity, therefore,ed
pends on mitochondrial translation, but the molecular
mechanisms, regulation and timing of mitochondrial san
lation are largely unexplore?]. A major obstacle when
analyzing mitochondrial translatioim cells is the need to
inhibit cytosolic translation in order to follow incorporation
of radiolabeled amino acids into mitochondrial translation
products[3]. Such pharmacological inhibition impaces- s

verely on cellular homeostasis and alters signaling cascades.

For example, inhibition of cytosolic translation using aycl
heximide leag to an increase in free amino acid levels,
which in turn activates TOR signalideg] and thus affects
cell growth, nutrient signaling and life spfift9]. Addition-
ally, cycloheximide treatment alters protein degradation
[10] and acutely impacts on mitochondrial translation hwit
in very short time frameg$11]. To directly monitor mi-
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sfGFR; superfoleer GFP,
UTRc untranslated region.

chondrial protein synthesis without interfering with cellular
protein homeostasis new experimental tools are needed.

Employing biolistic transformation we have integrated
a gene encoding superfoldgsFP into the mitochondrial
genome. This reporter is compatible with mitochondrial
respiratory function and enables the direct detection of
mitochondrial translatiorin vivoas GFP fluorescence. This
novel tool will facilitate future studies on the reguilan
and timing of mitochondrial translation.

RESULTS AND DISCUSSION

Integration of a superfolder GFP gene into the mitochon-
drial genome

In a pioneering previous study, a gene encoding flaere
cenceenhanced GFP was inserted into the mitochondrial
genome to replace the open reading frame ©@©XJ312].
The resulting strain wasespiration deficient and
pressed only weak fluorescence, which limited its ukefu
ness in fluorescence microscopic and flow cytometrie e
periments. This limitation could be explained by poodfol
ing of GFPexpressedin the context of the mitochondral
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FIGURE 1: Integration of SfGFF into the mitochondrial genome. (A) Strain construction strategy{B) Schematic representation of intemyr
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Control of successful expression of sfGFR Western blotting using a GFP antibodyr®sphoglycerate kinase (Pgkl) served as a loa

control.

translation systen13], which is specialized on the prociu
tion of membrane proteins. To circumvent the folding
problem, we employed superfolder GFP (sfGFP), which
folds with enhanced kinetics resulting in a more stable
protein [14]. To allow translation of the mRNA by ot
chondrial ribosomes its coding sequence was flanked by
0KS dziKSYyGiAO pQ YR oQOXazy i
[15-18], coding for the cytochrome oxidase subunit Cox2.
To avoid the respiratory deficiency associated with iract
vation of mitochondrial genes, we engineered a newamit
chondrial genome that coded for sfGFP asaafditional
ninth open reading frame. The final engineered gene was
termed sfGFP and was cloned into the pPT24* plasmid
(Fig 1AB), yielding a plasmid (pPT24fGFP) that can-
tained COX2 Q|!-sfGFP-COX0 Q! ¢w & @St f
thentic COX2 including itsupstream sequences (Fig 1B).
pPT24:sfGFP was delivered into a strain that lacks
mtDNA ¢ho”) using biolistic transformatiofil9]. After -
lection, the resulting strain that carried pPa*-sfGFP was
used to cytoduce straimox262, which lacks a functional
COX2ene, to gain respiratory competence by homologous
recombination of the two mitochondrial genomd20Q].
Finally, we transferred the novel mitochondrial genome
into the strain W303 resulting ithe strain sfGFP. Wes-

ern blot analysis demonstrated that this engineereée- g
nome expressed readily detectable levels of sfGiFRy 1C).

Expression of mitochondrially encoded SfGFP does not
disturb mitochondrial function

We assessed the impact afGFP expression on mi-
chondrial function by monitoring respiratory growth on
non-fermentable medium and found that it was similar
between wild type and the sfGERtrain (Fig 2A and 2B).
As predicted, steady state levels of respiratory chainusub
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nits were unchanged and showedtiet expected increase
when cells were grown in nefermentable compared to
fermentable medium (Fig 2C). Finally, we checked fef re
piratory chain assembly into supercomplexes as well as
cytochrome oxidase activity and found that both wene-u
changed comparedo wild type (Fig 2D). We therefore
dohcjOdet tHatlieSpRessiiiB il $fGFFas nbt! altewtbe a2 F
sembly of respiratory complexes or the general respiratory
competence of the cells.

Expression of sfGFP™ followed by flow cytometry

We next explored the possiltifito use sfGFPas an optical
readout for mitochondrial translation. First we checked the
steadystate levels of sfGFPby Western blotting during
redpigation & & ferinentation to verify that mitochondrially
encoded sfGFP follows the same expression paties
other mitochondrially encoded proteins. As expected
sfGFP protein levels increased in the presence of gala
tose and glycerol after 6 and 8 hours in the same way as
Cox2 levels (Fig 3). Next we determined GFP flusre
cence by flow cytometry under ¢hsame conditions and
observed an increase in the fluorescent signal when cells
were grown for 6, 8 and 10 hours in galactose or glycerol
containing medium (Fig 30). To control for mitochondrial
biogenesis we used mChertggged Citl, a nuclear engo

ed protein that is imported into mitochondria from the
cytosol [21]. Similar to sfGFP CittmCherry levels also
increased when grown in th@resence of galactose or
glycerol, indicating a general increase in mitochondrial
biogenesis induced by galactose and glycerol (RB)3T
sum, these results confirm that sfGFRepresents a fuo-
tional reporter for the analysis of naithondrial translaibn

in vivo without the need to inhibit cytosolic translation.
Flow cytometry as quantitative readout opens up many
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FIGURE 2: Expression of STGFP does not disturb mitochondrial function.

(A) Wild type (WT) and sfGEmvere streaked out on fermentable

(Glucose) and nefermentable (Glycerol) mediun{B) Doubling time during exponential growth phase in glucose (Glc) and glycerol
Data represent the mean of three independent experimentsSiD.(C) Steady state leus of OXPHOS subunits in WT and sTGRERNg e-
ponential phase in glucose (Glc), galactose (Gal) or glycerol (Gly). Whole cell extracts were separatel/AdBES&®I analyzed with Wes
ern Blotting using the indicated antibodig¢®) Isolated mitochondriaof WT and sfGFRwvere lysed in digitonin and protein complexes we
separated by blumative PAGE. Supercomplexes (I1121V ag¥:)llwere either visualized by Coomassie staining or complex-@¥l iactivity

assay.

possibilitiesto interrogate mitochondrial translation with
single cell resolution and allows the combination of sfGFP
with additional fluorophores for a multitude of simultan
ous analyses.

sfGFP™ allows detection of changes in mitochondrial gene
expression

We determined the stability of sfGEBy inhibiting mib-
chondrial translation using chloramphenicol (CAP). Using
immunoblotting coupled with detection by nedmfrared
fluorescence, we found that sfGFRevels declined over
four hours after treatment withCAP (Fig 4A). Accordingly,
flow cytometry confirmed that already two hours after
block of mitochondrial translation via CAP, a decrease in
GFP intensity was detectable. While thiss of sfGFP
signal became even more evident over time (Fig 4B), the
nuclear encoded mitochondrial protein CithCherry was
stable (Fig 4B). To further test the reporter construct, we
made use of glucose repression of mitochondrial function
[22-24). When adding glucose to ndarmentable medium,
mitochondrial biogenesis as well as translation and
OXPHOS assembly are repressed. During glucosesrepre
sion, we observed a pronounced decline in sfGIERels by
Western blotting and flow cytometric evaluation. Ag-e
pected, CitImCherry levels were also decreased by- gl
coseinduced repression of mitochomiél biogenesis(Fig
4GD). Taken together, both western blot analysis and flow
cytometric evaluation of sfGERaithfully report the spedi

ic inhibition of mitochondrial translation by CAP as well as
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the general down regulation of mitochondrial biogenesis
during glucose repression.

sfGFP™ visualized by fluorescence microscopy

Finally, we visualized sfGF®ia fluorescence microscopy.
Cells grown in noffiermentable medium in exponential
phase showed mitochondriallpcalized GFP fluorescence
(Fig 5), as evidenced by-tmralization with CitdinCherry
(Supplemental movie This opens the possibility to employ
sfGFP not only as a reporter for mitochondrial translation
but also to follow mitochondrial movement duringelt
division, mitophagy, or mitochondrial biogenesis.

In conclusion, we have established a functionally-ne
tral mitochondrially encoded GFP reporter, termed sfGFP
which is easily monitored via Western blotting, flow- c
tometry and microscopy. Our repornteallows studying
mitochondrial translationin vivowithout poising cytopla-
mic translation and therefore enables detailed studies of
mitochondrial function without perturbing cell physiology.
The versatile nature of the new mitochondrial genome
describedhere opens up new venues for the investigation
of mitochondrial gene expression by optical methods in
respiring cells.

MATERIALS AND METHODS

Generation of STGFP

A gene encoding superfolder GFP (sfGFP)weasrecodedo
match mitochmdrial codon usagesynthesized(Invitrogen,
Life technologies, GeneArt) and cloned into the pKidctor
using Ndel andXhol. pKMcontainsthep éndo Q| ¢ @OX2 T
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FIGURE 3: Analysis of sSfGFP™ expression. (A) Cells from an overnight culture in YPD were grown to exponential phase for six or eight
on different carbon sources. Whole cell extracts were separated orRPAEE and analyzed with Western Blotting using the indicatad :
bodies.(B) Quantificationof Western blotting signal of three independent experiments represented as mear®D+/GFP signals werernc
malized to that of Sohosphoglycerate kinase (Pgkl) and the YPD signal was sdCjd-low cytometry histogram showing sfGFéhd Citt

mCherrysignals of cells grown on the indicated carbon sourf®sAs in A) but cells were analyzed using flow cytometry. Signal intensiti
sfGFP and CittmCherry were quantified from eight independent samples, and the fluorescence intensity recordedtfaindacking any
fluorescent tag was subtracted as background. Signals on galactose or glycerol were normalized to the respective timeylcose and

the mean +/ SEM is depicted.

between two EcoRI restriction sitesiGFE ¥t | y1 SR 0 @&
' YR o QCOK2vas than recloned from pKM into pPT24*
using the EcoRI restriction sit§$5, 25, 26]. pPT24*sfGFP
contains a part of authentic mtDNA, the sfGRRder control
2F (GKS pQ Coyznd, dwhsteam &BFP, the
ful COXASY S Ay Of dzRAY 3 A GsiGFBvias
integrated into the mitochadrial genome via biolistic tram
formation and homologous recombination. Briefly, thieo”
karl-1 DFS160 straif27] was grown in YP medium containing
2% raffinose and spread on $Bu plates containing sorbitol

(2 M). The nuclear marker plasmid pRS315 (5 ug), as well as
the pPT24%sfGFP (10-15 pg), were precipitated on tungsten
particles (100 ul tungsten particle (Qun), 1 M CaGl 16 mM
spermidine) and spread on flying discs. The particles were
bombarded onto a lawn of yeast cells with a particle gun-(Bi
rad, USA). After four to five days positive nuclear ¢ran
formants were collected on a master plate and crossed to
cox262 tester strain[20, 28]. The diploids were screened for
respiratory growth. fis crossing step was repeated twice with
positive clones. Eventually the stable synthetio strain can-
taining pPT24%fGFP was repopulated with mtDNA via oyt
duction with a strain containing theox262 mutation. A hg-

loid clone that regainedespiratory competence was idant

fied and used to transfer mitochondrial DNA into W30’

to create strain MOY1355Viat a ade21 his311,15 trptl
leu2-3,112 ura3l, sfGFPm::cox2, CQX2n mCherrgtagged
variant of Citl was generated by replacing thepstodon of
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théi éhdogepals open reading frame with a sequence dnco
ing mCherry followed by &RP1selection cassette to yield
strain MOY1360Mat a ade21 his311,15 trpt1 leu23,112
ura3-1, CITimCherry::TRP1, sfGFPm::cox2, §QC&ls were
gownat3@/ Ay wm: &SlFad SEGNpOis

Iy Plenteftéd dmithd2%Ldextrasa (YPD), 2% galactose (YPGal) or

2% glycerol (YPG) under shaking. When indicated 2 mg/mL
chloramphenicol (dissolved in ethanol) or 150 mg/mL @ycl
heximide (dissolved in water) were added

SDS-PAGE and Western Blotting

Proteins were extracted by alkaline lysis with 370 mM NaOH,
precipitated with 8.33% TCA and pellets were resuspended in
reducing sample buffer (50 mM T##Cl pH 6.8, 2% SDS, 10%
glycerol, 100 mM DTT) (modified frof9]). Proteins were
separated using 16% acrylamid®,2% bisacrylamide SbS
PAGE and blotted on nitrocellulose membrane. Western blot
signals were quantified using ImageJ. For immunoblot-ana
yses upon treatment with chloramphenicol (CAP) or addition
of 2% glucose, cells equivalent of 4 OD600 were harvestted
indicated time points. Proteins were extracted by alkaline lysis
with 1.8 M NaOH, 7.5%mercaptoethanol and precipitated
with 27.5% TA. Pellets were resuspended 100 pL urea
loading buffer (200 mM TrisiCl pH 6.8, 8 M Urea, 5% SDS, 1
mM EDTA, 0.028romphenolblue, 15 mM DTT) and inctba
ed at 65°C for 10 min. Proteins were separated on 12.5% Tris
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FIGURE 4: Impact on sfGFP™ protein levels by inhibition of mitochondrial translation or glucose repression. (A) Cells from an overnigh
culture in YPD were grown to exponential phase for six hours in glycerol. Cells were treated with 2 mg/ml chloramphé®icol (Elficle
control (VC) for the indicated times and whole cell extracts were separated ofPBBE and analyzed with Western Blotting using
indicated antibodies. The fluorescence signals of 6 independent experiments were quantified and the GFP signals werednrthali.
tubulin signals. Data is depicted as fold of the respective untreated time point and the me&&EM is displayedB) As in(A) but cells
were analyzed using flow cytometry. Signals of sfGiel CittmCherry were quantified from eight independeransples, and the fluore
cence intensity recorded for a strain lacking any fluorescent tag was subtracted as background before signals from tieateceaso-
malized to control values. Numbers indicate significance values from studest. {C) Cells vere grown as in A, but exposed to glucos
(D) As in (B) but cells were exposed to glucose. Numbers indicate significance values from stesient t

glycine SD®AGE and transferred onto nitroadtise mem- ty was visualed by adding 2.5 mM 3;®iaminobenzidine
branes. Membraneswere blocked for 1 hour with 1 % skim dissolved in 0.05 M phosphate buffer pH 7.4, 1 nM catalase, 1
milk in TBST (0.05% Tween) and incubated over night with mg/ml cytochromecand 240 mM sucrose.

antibodies directed against alpHabulin (ab184970) and GFP

(Roche 11814460001) in TBST (0.2% Tween + 1% skim milk).Fluorescence microscopy

Membranes were washed four times with TBST (0.05% Tween) Cells were grown at 30°C and live images were taken using a

and incubated for 1 hour with the following netnfrared Zeiss LSM 800 Airyscanicroscope (Carl Zeiss, Jena, Germany)
fluorescent secondary antibodies: amtiouse IRDye 800CW with a Plarapochromatic 63X/1-4umerical aperture oilm-
926-32210 andanti-rabbit IRDye 680RD 988071 diluted mersion lens. For confocal excitation of GFP, am@@8diode

1:20000 in TBST (0.2% Tween + 0.01% SDS). Membranes werdaser was set at 10.0%, and emission was detected between
washed four times with TBST (0.05% Tween), rinsed twice with wavelengths 492 and 540 nm. For exditat of mCherry, a

TBS and signals were analyzed using Odyssey-#89(IGor 561-nm laser line was used at 2.8%, and emission was tetec

Biosciences, Lincoln, NE) and Imaigyeli® Lite software. ed between 565 and 695 nm. Askack of cells was performed
using ZEN blue 2.1 software and maximum intensity groje

Native-PAGE and complex IV activity tions of the images are shown. Image analysis was done by

For nativePAGE, isolated mitochondria (100 ug) were stlubi  usinglmageJ (National Institutes of HealthetBesda, MD) and

ized (50 mM BisTris, 25 mM KCI, 1 mM EDTA, 2 mM am Imaris 8.4 software.

nohexanoic acid, 12% glycerol, 1 mM PMSF, 1x complete, 2%

digitonin) for 10 minutes on ice. After a clarifying spin, lysates Flow cytometry

were separated on a native-B% BisTris gel (NativePAGE, 1x1@ cells were harvested via centrifugation. Cells were
ThermoFisher). Supercomplexes were visualized by coomassie washed once with water and resuspended in PBS (PBS, 25 mM
staining or complex IV activity assay. Briefly, complex IVi-activ
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