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Research Article 

ABSTRACT  Cardiolipin (CL) optimizes diverse mitochondrial processes, includ-
ing oxidative phosphorylation (OXPHOS). To function properly, CL needs to be 
unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-
function mutations in the TAZ gene are responsible for the Barth syndrome 
(BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished 
OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein 
synthesis, either chemically with the use of cycloheximide or by specific ge-
netic mutations, fully restores biogenesis and the activity of the oxidative 
phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the de-
faults in CL were not suppressed, indicating that they are not primarily re-
sponsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of 
cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa 
cells, as evidenced by the recovery of a good proliferative capacity. These 
findings reveal that a diminished capacity of CL remodeling deficient cells to 
preserve protein homeostasis is likely an important factor contributing to the 
pathogenesis of BTHS. This in turn, identifies cytosolic translation as a poten-
tial therapeutic target for the treatment of this disease. 
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INTRODUCTION 
The Barth Syndrome (BTHS) is a rare X-linked recessive 
mitochondrial disorder that is characterized by cardiac and 
skeletal myopathies, growth retardation, hypocholesterol-
emia, increased urine levels of 3-methylglutaconic acid and 
high susceptibility to bacterial infections, due to cyclic neu-
tropenia [1-3]. This disease is caused by mutations in Ta-
fazzin, a mitochondrial protein involved in the remodeling 
of cardiolipin (CL). This phospholipid is mainly found in 
mitochondria, [4-10] where it optimizes numerous pro-

cesses including oxidative phosphorylation (OXPHOS) [11-
13], fusion [14], fission [15, 16], protein import [17, 18], 
iron-sulfur cluster biogenesis [19], mitophagy [20-23], 
apoptosis [7, 23-28] and the transport of metabolites 
across the mitochondrial inner membrane [6, 17, 29-36]. 
Tafazzin is an acyltransferase required for the maintenance 
of unsaturated carbon-carbon bonds in CL fatty acyl chains 
[1, 37-41]. Loss-of-function mutations in Tafazzin lead to 
reduced levels of unsaturated CL and the accumulation of 
CL species with an incomplete set of fatty acyl chains (such 
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as monolysocardiolipin, MLCL) [42-44]. This in turn results 
in multiple mitochondrial alterations that ultimately com-
promise the OXPHOS capacity [24, 45-48]. 

Simple model organisms such as Saccharomyces cere-
visiae or baker's yeast are an important resource for the 
study of mitochondrial diseases. Mitochondria from this 
single-celled fungus and humans show many similarities 
[49-53]. Being easily amenable to genetic manipulation of 
mitochondrial function [54, 55], and owing to the ability of 
yeast to survive the loss of oxidative phosphorylation; 
yeast models of human mitochondrial diseases can be easi-
ly created and kept alive when provided with fermentable 
substrates [56, 57]. The common respiratory growth defect 
of these models enables large-scale screening of genetic 
and pharmacological suppressors [57-59]. Yeast has in this 
way already pointed to several potential druggable thera-
peutic intervention points, such as the oxodicarboxylic acid 
carrier [60] and mitochondrial protein import [61], among 
others.  

Herein we report that reducing cytosolic protein syn-
thesis preserves OXPHOS in CL remodeling deficient yeast 
and improves the growth rate and viability of human HeLa 
cells lacking Tafazzin. This study sheds new light on the 
pathogenesis of BTHS and identifies cytosolic protein syn-
thesis as a potential intervention point for the treatment of 
the disease. 

 

RESULTS 
Decreasing cytosolic protein synthesis improves respira-
tory growth of taz1Δ yeast 
We [60] and others [62] showed that yeast cells lacking the 
gene encoding Taz1p (taz1Δ) grow poorly on respiratory 
carbon sources at 36°C, compared to the wild-type (WT) 
TAZ1+ strain. Using a drug screening procedure we previ-
ously described [58], we found that cytosolic protein syn-
thesis inhibitors such as, cycloheximide (hereafter abbrevi-
ated as CHX), anisomycin and emetine suppressed this 
phenotype in a dose-dependent manner. In the tests 
shown in Fig. 1A, taz1Δ cells freshly grown by fermentation 
in glucose were spread on plates containing ethanol (res-
piratory carbon source) and then exposed to paper disks 
spotted with the drugs dissolved in DMSO. After five days 
of incubation at 36°C, halos of enhanced growth appeared 
around the filters, whereas DMSO alone had no effect. In 
this assay the compounds diffused into the medium, ex-
plaining why growth was improved only at some distance 
around the filters, below which it was totally absent due to 
a too high concentration of the protein synthesis inhibitors. 
CHX was active at 20-30 fold lower concentrations com-
pared to anisomycin and emetine (Fig. 1A). The optimal 
rescuing concentration range of CHX was determined by 
growth tests in liquid media containing 2% ethanol and 
0.5% galactose, at 36°C. After consumption of the galac-
tose, which is a fermentable substrate, growth of taz1Δ 
yeast was much less efficient compared to the WT, owing 
to its failure to properly express mitochondrial function 
(Fig. 1B). The best growth improvement of taz1Δ yeast was 
observed in the presence of 10 nM CHX. At this concentra-

tion, growth of the wild type was unaffected (Fig. 1B). 
Pulse labeling of proteins with S35-methionine and S35-
cysteine revealed that the rate of cytosolic protein synthe-
sis was decreased by about 50% in taz1Δ yeast grown in 
the presence of 10 nM CHX, in comparison to the WT (Fig. 
1C). Interestingly, cytosolic translation was already de-
creased in the mutant grown in the absence of the drug by 
about 35%, possibly as a means to attenuate a protein 
stress induced by a lack in CL remodeling (see below).  

If CHX is a well-known inhibitor of cytosolic translation, 
one cannot exclude that it has other effects in cells that 
could be responsible for the improved respiratory growth 
of taz1Δ yeast. We therefore tested the effects on taz1Δ 
yeast of null mutations in the genes REI1 and RPL6B that 
are known to partially inhibit cytosolic protein synthesis by 
20% and 30% respectively [63, 64]. The double mutants 
taz1Δ rei1Δ and taz1Δ rpl6bΔ grew efficiently on respirato-
ry carbon sources (Fig. 1D, E), and showed a 50% drop in 
the rate of protein synthesis (Fig. 1C). These data con-
firmed that the beneficial effect of CHX in taz1Δ yeast re-
sulted from a decreased rate of protein synthesis. 
 
Decreasing cytosolic protein synthesis improves mtDNA 
maintenance in taz1Δyeast 
We previously showed that taz1Δ yeast grown by fermen-
tation at 28°C, i.e. in conditions where the presence of 
functional mtDNA is not indispensable, has an increased 
propensity to produce ρ-/ρ0 cells issued from large dele-
tions in the mitochondrial genome (60% vs 5% in the WT) 
[60]. The double mutants taz1Δ rei1Δ and taz1Δ rpl6bΔ 
produced five to ten times less ρ-/ρ0 cells than taz1Δ yeast 
in glucose cultures (Fig. 1F). Thus, partially decreasing cyto-
solic translation preserves a proper maintenance of mtDNA 
in CL deficient yeast cells.  
 
Reducing cytosolic translation does not restore CL remodel-
ing in taz1Δ yeast 
As reported [39, 60, 62], mitochondria from taz1Δ yeast, 
compared to those from the WT, have 50% less CL, a 2-fold 
higher content in phosphatidylinositol (PI), whereas phos-
phatidylethanolamine (PE) and phosphatidylcholine (PC) 
accumulated normally (Fig. 2A). Additionally, the remaining 
CL species are less unsaturated as suggested by the de-
creased levels in oleic acid chains (C18:1) and increased 
stearic (C18:0) and palmitic (C16:0) groups compared to CL 
molecules extracted from the WT (Fig. 2B). Strains taz1Δ 
rei1Δ and taz1Δ rpl6bΔ showed very similar phospholipid 
profiles (Fig. 2A, B), indicating that mitochondrial function 
recovery in taz1Δ yeast upon partial inhibition of cytosolic 
translation did not result from an enhanced production of 
mature CL species. 
 
Partially decreasing cytosolic protein synthesis fully re-
stores OXPHOS in taz1Δ yeast 
As we have shown [60], the reduced ability of taz1Δ yeast 
to grow at 36°C in 2% ethanol + 0.5% galactose (shown in 
Fig. 1B)  correlated  with  a  decreased rate of  oxygen  con- 
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FIGURE 1: Partially decreasing cytosolic translation in Taffazin-deficient (taz1Δ) yeast improves respiration-dependent growth and mtDNA maintenance. (A) 
taz1Δ yeast cells were spread as dense layers onto rich ethanol solid media and then exposed to sterile filters spotted with cycloheximide, anisomycin or eme-
tine (dissolved in DMSO). The plates were scanned after 5 days of incubation at 36°C. The filter at the top left was spotted with DMSO alone to provide a nega-
tive control. (B) Determination in liquid cultures of CHX concentrations that optimally rescue taz1Δ yeast. Complete synthetic media (CSM) containing 0.5% 
galactose + 2% ethanol supplemented or not with CHX at the indicated concentrations were inoculated with WT and taz1Δ cells pre-grown in CSM containing 
2% glucose at 28°C. The cultures were performed at 36°C and cells densities (OD600nm) taken over a period of 36 hours. (C) Rate of cytosolic protein synthesis. 
Total proteins and mitochondrial proteins were labeled with a mixture of [35S]-methionine and [35S]-cysteine for 20 min in whole cells from wild type, taz1Δ 
rei1Δ, taz1Δ rpl6bΔ and taz1Δ yeast grown for 24 hours in rich 0.5% galactose + 2% ethanol at 36°C, and taz1Δ cells grown in the same conditions in presence 
of 10 nM cycloheximide (CHX). After the labeling reactions, total protein extracts were prepared and separated by SDS-PAGE on a 12% polyacrylamide gel (75 
µg per lane). The gels were dried and analyzed with a PhosphorImager. Quantification was performed using Image J. Data are expressed in % relative to the WT 
(n=3). The shown data are cytosolic protein synthesis rates (total minus mitochondrial protein synthesis rates). Statistical analysis was done with Tukey’s test 
(*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001). (D) Genetic ablation of REI1 (rei1Δ) or RPL6B (rpl6bΔ) improves respiratory growth of taz1Δ yeast. WT, taz1Δ, 
taz1Δ rei1Δ and taz1Δ rpl6bΔ cells freshly grown at 28°C in rich glucose were serially diluted and spotted onto rich ethanol and glucose plates. The plates were 
scanned after 4 days of incubation at the indicated temperature. (E) Growth of WT, taz1Δ, taz1Δ rei1Δ and taz1Δ rpl6bΔ strains in liquid complete synthetic 
media containing 0.5% galactose + 2% ethanol at 36°C. The cultures were inoculated with cells grown in CSM containing 2% glucose at 28°C. The cultures were 
performed at 36°C and cell densities (OD600nm) taken over a period of 60 hours. (F) Genetic ablation of REI1 (rei1Δ) or RPL6B (rpl6bΔ) in taz1Δ yeast preserves 
mtDNA maintenance. Proportions of ρ-/ρ0 cells produced in glucose cultures at 28°C of strains WT, taz1Δ, taz1Δ reiΔ, and taz1Δ rpl6bΔ were determined using 
the procedure described in [60] (n=3). Data are expressed in % relative to the WT and were statistically analyzed using Tukey’s test (*P<0.05; **P<0.01; 
***P<0.001). 
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sumption and diminished levels of key components in-
volved in the transfer of electrons to oxygen, including 
complexes II-IV and cytochrome c. Accumulation of these 
proteins (Fig. 3A, B) and oxygen consumption measured 
with either NADH or Ascorbate-TMPD as electron donors 
were substantially improved after eliminating REI1 or 
RPL6B (Fig. 3C) or growing taz1Δ yeast in the presence of 
10 nM CHX (Fig. 3D). Consequently, the rate of mitochon-
drial ATP synthesis was restored to almost normal levels 
(Fig. 3E).  

These observations were corroborated by monitoring 
changes in mitochondrial membrane potential (ΔΨ) with 
Rhodamine 123. As we showed [60], adding ADP to respir-
ing taz1Δ mitochondria did not decrease ΔΨ due to their 
poor capacity to synthesize ATP. Consistent with their good 
ability to produce ATP, those from strains taz1Δ rei1Δ and 
taz1Δ rpl6bΔ efficiently responded to ADP as WT mito-
chondria (Fig. 4). Furthermore, after a subsequent addition 
of KCN, to block the respiratory chain, ΔΨ collapsed in one 
single rapid phase in taz1Δ mitochondria, whereas a resid-
ual potential was preserved in those from taz1Δ rei1Δ and 
taz1Δ rpl6bΔ and WT yeasts. This residual potential is due 
to the pumping of protons by ATP synthase, coupled by the 
hydrolysis of the ATP that accumulated in the mitochondri-
al matrix during phosphorylation of the added ADP, as evi-
denced by the loss of this potential by inhibiting ATP syn-
thase with oligomycin (Fig. 4).  

Taken together, these observations demonstrate that 
partially decreasing cytosolic translation preserves the 
biogenesis and activity of the OXPHOS system in CL re-
modeling deficient yeast. 
 
Partially decreasing cytosolic protein synthesis suppresses 
the enhanced production of ROS in taz1Δ yeast 
Defects in the mitochondrial respiratory chain often result 
in a higher production/accumulation of reactive oxygen 
species (ROS) owing to an enhanced diversion of electrons 
from their normal pathway to oxygen, which was observed 
in CL remodeling deficient cells [65]. Thus, it was expected 
that taz1Δ yeast should produce less ROS after deleting 
REI1 or RPL6B or during growth in the presence of 10 nM 
CHX, which was indeed observed (Fig. 5). 
 
Decreasing cytosolic protein synthesis is also beneficial to 
tafazzin-deficient human cells 
We aimed to understand whether partially decreasing cy-
tosolic translation could also benefit human cells lacking 
Tafazzin. To this end, we used our previously described 
HeLa cells, in which the TAZ gene was knocked down by 
RNA interference (shTaz1) and two control cell lines, 
shWT1 and shTaz1R in which the expression of TAZ1 was 
not inhibited. As reported, ShTaz1 poorly accumulates Ta-
fazzin, is defective in CL maturation, has a reduced capacity 
to associate respiratory chain complexes into ‘respira-
somes’, produces abnormally enlarged cells and has a 
higher content in mitochondria compared to shWT1 and 
shTaz1R, as do cells from BTHS patients [24, 48, 66]. 

Herein we report that ShTaz1 cells proliferate four 
times slower and die more rapidly, in comparison to 

ShWT1 and ShTazR1 cells (Fig.6 A, B). We took advantage 
of these differences to test the capacity of CHX at counter-
acting the detrimental effects of a lack in CL maturation in 
human cells. A large beneficial effect was observed at a 50 
pM concentration of CHX. In the experiment shown in Fig. 
6C, the drug was added 24-25 hours after inoculating 200 
µl of media with 5000 cells. CHX induced a 48 h lag phase, 
after which the cells grew for a long-lasting period of 170 
hours, before dying and detaching from their support. In 
the absence of CHX, death was observed much more rapid-
ly, after 72 hours of continuous growth. At the concentra-
tion of 50 pM, CHX had no effect on the proliferation of 
ShWT1 (Figure 6D). These observations indicate that a par-
tial decrease in cytosolic translation is, as in taz1Δ yeast, 
beneficial to human cells defective in CL remodeling. 

FIGURE 2: Genetic ablation of REI1 or RPL6B in taz1Δ yeast does 
not restore cardiolipin remodeling. Lipids were extracted from 
mitochondria isolated from WT (black bars), taz1Δ (open bars), 
taz1Δ rei1Δ (grey bars) and taz1Δ rpl6bΔ (striped bars) cells grown 
in CSM 0.5% galactose + 2% ethanol at 36°C until a density of 2-3 
OD600nm. (A) Relative contents of PE (phosphatidylethanolamine), 
CL (cardiolipin), PI (phosphatidylinositol) and PC (phosphatidylcho-
line) within each strain. (B) Relative fatty acid chain composition 
of CL within each strain (16:0, palmitic acid; 16:1, palmitoleic acid; 
18:0, stearic acid; 18:1: oleic acid). Statistical analysis was done 
with Kruskal-Wallis test followed by Dunn’s multiple comparison 
test (*P<0.05; **P<0.01; ***P<0.001). Data are expressed as 
mean ± s.d. (n=4). The data for WT and taz1Δ strains were report-

ed previously [60]. 
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DISCUSSION 
While a general inhibition of cytosolic protein synthesis 
would obviously be detrimental to the cell, our study re-
veals that a partial (50%) decrease in this activity preserves 
mtDNA maintenance and the biogenesis and activity of the 
oxidative phosphorylation (OXPHOS) system in a yeast 
model of the Barth syndrome, a mitochondrial disease 
associated to defects in the remodeling of cardiolipin (CL). 
The decreased mtDNA stability in taz1Δ yeast occurred in 
fermenting (glucose) cultures where the presence of this 
DNA is not indispensable. With a respiratory carbon source 
(glycerol), taz1Δ yeast cells lacking functional mtDNA were 
much less abundant owing to their incapacity to proliferate 
in these conditions. Thus, the respiratory deficiency of 
taz1Δ yeast does not result from a lack in mtDNA.  

Importantly, CL remodeling was still deficient in taz1Δ 
cells rescued by a partial inhibition of cytosolic translation. 
This finding has two important corollaries: (i) the CL species 
remaining in the mutant (50% vs the WT) are sufficient for 
a proper biogenesis and functioning of the OXPHOS sys-
tem, and (ii) the OXPHOS deficit is secondary to some oth-
er cellular dysfunction(s) that can be suppressed by de-

creasing cytosolic translation. At low concentration (50 
pM), CHX also improved proliferation of HeLa cells defi-
cient in tafazzin whereas that of WT Hela cells was not 
modified, which clearly demonstrates that growth im-
provement resulted from a compensation of the lack in 
tafazzin. Thus yeast and human CL remodeling deficient 
cells face similar difficulties that can be attenuated by tar-
geting cytosolic translation. These finding reveal that a 
diminished capacity of CL remodeling deficient cells to pre-
serve protein homeostasis is likely an important factor 
contributing to the pathogenesis of the Barth syndrome. 
This in turn, identifies cytosolic translation as a potential 
therapeutic target for the treatment of this disease.  

Previous work revealed that decreasing cytosolic trans-
lation can also rescue yeast models of adPEO (autosomal 
dominant progressive external ophthalmoplegia) caused by 
mutations in ANT, a protein that exchanges adenine nucle-
otides across the mitochondrial inner membrane [68]. In 
addition  to  a  defective  exchange  of adenine  nucleotides, 
these mutations compromise the impermeability to pro-
tons  of  the  inner  membrane.  Consequently,  a  sufficient  

FIGURE 3: Partially decreasing cytosolic translation preserves oxidative phosphorylation in taz1Δ yeast. The experiments here described 
were performed using mitochondria isolated from cells grown for 24 hours at 36°C in CSM containing 0.5% galactose + 2% ethanol, supple-
mented or not as indicated with 10 nM CHX, until a density of 2-3 OD600nm. (A, B) Steady-state levels of proteins involved in the transfer of 
electrons to oxygen. (A) Proteins were extracted from the mitochondrial samples using 2 g digitonin per g of proteins. The supercomplexes 
III2-IV2 and III2-IV1 were revealed by the complex IV activity after separation by CN-PAGE or by western blot with antibodies against Cox2 in 
BN-PAGE gels. (B) Left panel. Total mitochondrial protein samples were resolved by SDS-PAGE (50 μg per lane) and probed with antibodies 
against the indicated proteins. The shown gels are representative of at least 3 experiments. Right panel. Quantification using ImageJ soft-
ware. Levels of Cytc, Cox2, Atp1 and Sdh2 are normalized to Por1p and expressed relative to WT. (C) Genetic ablation of REI1 or RPL6B in 
taz1Δ yeast preserves mitochondrial respiration. On the left are the rates of oxygen consumption from NADH (4 mM) alone (state 4), after 
further addition (150 μM) of ADP (state 3) or CCCP (4 μM) (uncoupled respiration). The data are expressed in % of WT state 4 respiration 
(mean ± s.d, n=4). On the right are the oxygen consumption rates from electrons delivered directly to complex IV by ascorbate 12.5 
mM/TMPD 1.4 mM in the presence of CCCP. Data are expressed relative to the WT (mean ± s.d, n=4). (D) Mitochondrial respiration is pre-
served in taz1Δ yeast grown in the presence of 10 nM CHX. NADH was used as the electron donor, as described in panel C (n=4). (E) ATP 
synthesis was measured using NADH as a respiratory substrate in the presence of 1 mM ADP. Data are expressed as mean ± s.d. (n=4) rela-

tive to the WT. The data for WT and taz1Δ strains were reported previously [60]. 
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electrical potential cannot be maintained across this mem-
brane and this impedes many proteins to reach the orga-
nelle. This has deleterious consequences, not only for mi-
tochondria, but also for the cytosol that is then confronted 
with the over-accumulation and the misfolding of mito-
chondrial precursor proteins [63]. This protein stress, 
which was termed mitochondrial precursor over-
accumulation stress (mPOS), was shown to induce a cellu-
lar response, named unfolded protein response activated 
by mistargeted mitochondrial proteins (UPRam), that is 
mainly characterized by a decreased rate of cytosolic pro-
tein synthesis and a faster rate of protein clearance by the 
proteasome [68, 69]. Consistent with these findings, muta-
tions in proteins directly involved in the transport of pro-
teins into mitochondria were found to similarly poison the 
cytosol with mitochondrial proteins triggering the cell to 
diminish the production and stimulate the degradation of 
proteins [69]. The significant drop (35%) in cytosolic trans-
lation in taz1Δ yeast is an indication that a lack in CL re-
modeling could as well lead to the congestion of the cyto-
sol with miss-localized mitochondrial proteins.  

Considering the numerous roles of CL in mitochondria, 
it might be that a lack in the remodeling of this phospholip-
id affects the capacity of mitochondria to import proteins, 
and thereby makes other compartments of the cell more 
susceptible to protein stress. In support to this hypothesis, 
loss of CL remodeling was shown to partially compromise 
the biogenesis of the protein translocase (TOM) and the 
sorting and assembly machinery (SAM) of the outer mito-
chondrial membrane [18, 70]. In another study [36], no 
evidence was found for a decreased preprotein accumula-
tion in vitro with taz1-deficient mitochondria. However, 

because these assays used minute amounts of preproteins 
it might be difficult to detect in this way a partially dimin-
ished protein import capacity.  

The recovery of mitochondrial function in taz1Δ yeast 
by a partial decrease of cytosolic translation is in line with a 
recent study showing that CL has an important role in 
promoting the induction of a mitochondrial-to-cytosolic 
stress response (MCSR) that enables the cell to improve 
protein homeostasis in both compartments [71]. Consist-
ently also, it was shown that rapamycin, a specific inhibitor 
of the mTOR signaling pathway that regulates several ex-
tra-mitochondrial cellular pathways among which protein 
synthesis, robustly enhances survival and attenuates the 
disease’s progression in a mouse model and patient cells of 
the Leigh Syndrome, one of the most devastating mito-
chondrial disorders [72, 73].  

Clearly, beyond a certain level of mitochondrial damage, 
the protein stress responsive pathways may not be suffi-
cient. This may explain that in addition to its spontaneous 
35% drop in protein synthesis, taz1Δ yeast requires a fur-
ther (15%) decrease in this activity to be effectively res-
cued. Whether a general protein synthesis inhibition or a 
reduced production of specific proteins is beneficial to CL 
remodeling deficient cells is an interesting and important 
issue. In this respect, it is interesting to note that Gerst et 
al. found that ribosomal protein paralogs specifically mod-
ulate translation of mitochondrial precursor proteins [74]. 
Such observations hold promise for the development of 
more targeted therapeutic approaches with less undesira-
ble side-effects to preserve protein homeostasis in cells 
poisoned by the over-accumulation in the cytosol of mito-
chondrial protein precursors. 

FIGURE 4: Mitochondrial membrane potential. Variations in mitochondrial ΔΨ were monitored by fluorescence quenching of Rhodamine 
123, using intact, osmotically-protected, mitochondria isolated from WT, taz1Δ, taz1Δ rei1Δ and taz1Δ rpl6bΔ cells grown in CSM containing 
0.5% galactose + 2% ethanol at 36°C until a density of 2-3 OD600nm. The additions were 75 μM ADP, 0.5 μg/ml Rhodamine 123, 75 μg/ml mi-
tochondrial proteins (Mito), 10 μl ethanol (EtOH), 2 mM potassium cyanide (KCN), 4 μM CCCP (carbonyl cyanide-m-chlorophenyl hydrazone) 
and 4 μg/ml oligomycin (oligo). The shown tracings are representative of four experimental trials. The data for WT and taz1Δ strains were 
reported previously [60]. 
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MATERIALS AND METHODS 
Growth media 
The following media were used for growing yeast: Fermenta-
ble YPAD media containing 1% (w/v) yeast extract, 1% (w/v) 
bacto peptone, 40 mg/L adenine and 2% (v/v) glucose; Respir-
atory rich media YPAEthanol containing 1% (w/v) yeast extract, 
1% (w/v) bacto peptone, 40 mg/L adenine and 2% (v/v) etha-
nol; Non-fermentable complete synthetic media 
CSM/gal/ethanol containing 0.17% (w/v) yeast nitrogen base 
without aminoacids and ammonium sulfate, 0.5% (w/v) am-
monium sulfate, 0.5% (w/v) galactose, 2% ethanol and 0.08% 
(w/v) of a mixture of aminoacids and bases from Formedium. 
Solid media contained 2% (w/v) agar. 
 
Construction of strains taz1Δ rpl6bΔ and taz1Δ rei1Δ 
These strains were constructed by deleting entirely the open 
reading frame of RPL6B or REI1 with the KanMX marker using 
a described procedure [75] in taz1Δ mutant (MATa ade2-1 
ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100, taz1::TRP1). 
For the construction of the strain taz1Δ rpl6bΔ, the KanMX 
cassette was amplified using primers pFA6a-Kan: Rpl6b-del-F 
(CTT TCT TGA ACT TGG AAG AGA AGC AAA TAT ATT CAA CGA A 
cgg atc ccc ggg tta att aa) and Rpl6b-del-R (CTA TTT TAA ATC 
ATT TAT AAT TTT TTC AGT TCA AT gaa ttc gag ctc gtt taa ac) 
(the sequences in capital letters are homologous to the RPL6B 
flanking regions, those in lower case enable amplication of 
KanMX. For the construction of the strain taz1Δ rei1Δ, the 
KanMX cassette was amplified with pFA6a-Kan: Rei1-del-F 
(CAT TAG AAG TCA AGA AGA GAG CAT ATC AGT AAC AAT ACG 
cgg atc ccc ggg tta attaa) and Rei1-del-R (GCG ACA AAA TAC 
TAA AAA AAG TAG TGC AAA AAG AA gaa ttc gag ctc gtt taa ac). 
The primers Rpl6b-Fbis (CTG CGC TTC CGT TCA GCA TC), Rpl6b-
Rbis (CGA TGA CCT GAT CTT GAA CCC) or, Rei1-Fbis (GTG GTG 
TAG CTA TTT GTA CAT G), and Rei1-Rbis (CAA CAT CTT CAG 

TCT TCA GCA GC) were used to verify the deletions of REI1 and 
RPL6B by PCR. 

 
Yeast-based drug assay 
0.125 OD of exponentially growing cell were homogeneously 
spread with sterile glass beads on a square Petri dish (12 cm x 
12cm) containing solid YPA ethanol medium. Sterile filters 
were deposited on the plate and spotted with cycloheximide 
(purchased from Sigma), anisomycin (purchased from Sigma), 
and emetine (purchased from Sigma) dissolved in DMSO. 
Growth improvement was assessed after several days of incu-
bation at 36°C. 
 
Bioenergetics experiments 
The mitochondria were prepared by the enzymatic method as 
described [76]. Protein concentrations were determined by 
the Lowry method [77] in the presence of 5% SDS. Oxygen 
consumption rates were measured on 75 μg of fresh mito-
chondria using a Clarke electrode in the respiration buffer 
(0.65 M mannitol, 0.36 mM ethylene glycol-bis(2-
aminoethylether)-N,N,N′,N′-tetraacetic, 5 mM tris-phosphate, 
10 mM tris-maleate, pH 6.8) as described [78] (see legend of 
Fig. 3 for the concentrations of reagents used). Variations in 
mitochondrial transmembrane potential (ΔΨ) were evaluated 
in the same respiration buffer, by monitoring the quenching of 
rhodamine 123 fluorescence (0.5 mg/ml) using a λexc of 485 
nm and a λem of 525 nm under constant stirring, using a FLX 
Spectrofluorimeter (SAFAS, Monaco), as described [79]. ATP 
synthesis rates were measured using 75 μg of fresh mitochon-
dria in a 2-ml thermostatically controlled chamber at 28°C in 
respiration buffer, in the presence of 4 mM NADH and 1mM 
ADP as described [80]. Aliquots were withdrawn from the 
oxygraph cuvette every 15 seconds and supplemented with 
2.5% (w/v) perchloric acid, 8.5 mM EDTA to stop the reaction 
and then neutralized to pH 6.8 by adding 2N KOH, 0.3 M 
MOPS. ATP was quantified using a luciferin/luciferase assay 
(ATPLite kit from Perkin Elmer) on a LKB bioluminometer. The 
participation of the F1F0-ATP synthase in ATP production was 
assessed using the same protocol, in the presence of oligomy-
cin (3 µg/ml). 
 
BN/CN-PAGE & SDS-PAGE 
Blue native BN-PAGE and clear native CN-PAGE experiments 
were carried out as described [81], using mitochondrial ex-
tracts solubilized with digitonin (2 gr per gr protein) run in 3–
12% continuous gradient acrylamide gels. The in-gel complex 
IV activity was revealed using a solution of Tris 5mM pH 7.4, 
diaminobenzidine 0.5 mg/ml, cytochrome c 0.05 mM. The 
proteins were also analyzed by Western blotting on 
poly(vinylidene difluoride) membranes as described [82]. Pol-
yclonal antibodies raised against yeast ATP synthase were 
used at a dilution of 1:50000 for subunit α (gift from J. Ve-
lours, IBGC, Bordeaux, France); 1:10000 for cytochrome c (gift 
from S. Manon, IBGC, Bordeaux, France); 1:5000 for succinate 
dehydrogenase Sdh2 subunit (gift from C. Dallabona, Universi-
ty of Parma, Italy). Monoclonal antibodies against porin and 
Cox2 (from Molecular Probes) were used at a dilution of 
1:5000. Nitrocellulose membranes were incubated with perox-
idase-labeled antibodies (from Promega) at a 1:2500 dilution, 
and analyzed by electrochemiluminescence. Quantification of 
the protein signals was performed with the ImageJ software. 

FIGURE 5: Partially decreasing cytosolic translation in taz1Δ 
yeast preserves a normal production of ROS. The cells were 
grown in CSM containing 0.5% galactose + 2% ethanol at 36°C for 
48 hours. At the indicated times, ROS levels were measured by 
flow cytometry using dihydroethidium as a probe. The data are 
expressed in % relative to the WT at T0 (n=3). Statistical analysis 
was done with Tukey’s test (*P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001). The data for WT and taz1Δ strains were reported 
previously [60]. 
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In vivo labeling of mitochondrial translation products 
The indicated strains were grown to early exponential phase 
(OD/ml of 2) in 20 ml of rich ethanol/galactose media at 36°C. 
The cells were harvested by centrifugation and washed twice 
with a minimum medium containing 2% ethanol and 0,5% 
galactose, supplemented with histidine, tryptophan, leucine, 
uracil and adenine (50 mg/liter each). To evaluate total pro-
tein synthesis, cells were resuspended in 1 ml of the same 
medium with the addition of 55 µCi of [

35
S] methionine plus 

[
35

S] cysteine (Amersham Biosciences) and incubated for 20 
min at 36°C. To evaluate mitochondrial protein synthesis the 
same procedure was followed but before adding [

35
S] methio-

nine plus [
35

S] cysteine, cells were first treated with 7,5 mg/ml 
cycloheximide during 5 minutes. After the labeling reactions, 
total protein extracts were prepared and quantified using the 
Lowry method. The proteins were separated by SDS-PAGE on 
a 12% polyacrylamide gel, transferred onto a nitrocellulose 
membrane and analyzed with a PhosphorImager. Quantifica-
tion of radioactive proteins was performed using the software 
ImageJ [83]. 
 
Lipid analyses 
Mitochondrial lipids were analyzed as described [60]. In sum-
mary, the lipids were extracted with 2 ml of chloro-

FIGURE 6: CHX improves cell proliferation and viability of human Tafazzin-deficient cells. These experiments used our previously described 
HeLa cells in which TAZ gene has been knocked down by RNA interference (shTaz1) and two control cell lines, shWT1 and shTaz1R, in which 
expression of TAZ1 is not inhibited [67]. (A) Growth curves in 200 µL wells inoculated with 5 000 cells. After reaching a plateau, the cells die 
and detach from their support. S1, S2 and S3 are the slopes of the proliferation state for each cell lines. (B) Relative slopes (1/h) deduced 
from the proliferation curves shown in panel A. (C) xCELLigence recording of ShTaz1 proliferation in absence or presence of CHX at a concen-
tration of 50 pM. CHX was added (black arrow) after a 24-hour adhesion step. The cultures were inoculated with 5 000 cells in 200 μL wells. 
The optimal Cell Index values are indicated along the curves as well as the time (in hours) taken to reach the inflexion point. The horizontal 
red bar stands for the 48 hours lag phase induced by CHX. Four independent experiments with 4 wells for each growth condition have been 
done (16 wells in total for establishing mean values). the ±SD is directly drawn on the top of the curves (in black for ShTaz1 and in red for 
SgTaz1 + 50 pM CHX). (D) xCELLigence recording of ShWT1 proliferation in absence or presence of CHX at a concentration of 50 pM. The 
cultures were inoculated with 5 000 cells in 200 μL wells. CHX was added before the binding of the cell to the substrate in this case in order 
to avoid the perturbations induced by the injection of CHX along the trace; the ±SD is directly drawn on the top of the curves (in black for 
ShWT1 and in red for SgTaz1, there is no significant variation). 
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form/methanol (2:1, v/v). After centrifugation, the organic 
phase was isolated and the remaining lipids were further ex-
tracted twice by adding 2 ml of chloroform to the aqueous 
phase. The organic phases were pooled and evaporated to 
dryness. The lipids were then resuspended in chloro-
form/methanol (2:1, v/v). Respective volumes equivalent to 
50 µg of acyl chains were spotted on silica plates, four times 
for each strain. Polar lipids were separated by one dimension-
al TLC using chloroform/methanol/1-propanol/methyl ace-
tate/0.25% KCl (10:4:10:10:3.6, by vol.) as a solvent [84]. The 
lipids were located by immersing the plates in a solution of 
0.001% (w/v) primuline in PBS, followed by visualization under 
UV light. The zones of the gel corresponding to PE, CL, PI and 
PC were then scraped and added to 1 ml of methanol/2.5% 
H2SO4 containing 5 μg of heptadecanoic acid methyl ester as a 
standard. The lipid mixtures were incubated at 80

◦
C for 1 h, 

and 1.5 ml of water and 400 µl of hexane were then added. 
After centrifugation, the hexane phase containing FAMES (fat-
ty acid methyl esters) was isolated. Separation of FAMES was 
performed as described [39]. 
 
ROS analysis 
Cells at 0.4 OD units were taken from liquid cultures, pelleted 
in a microcentrifuge, resuspended in 1 ml of phosphate-
buffered saline (PBS) containing 50 μM dihydroethidium (DHE; 
Molecular Probes) and incubated at room temperature for 5 
min. Flow cytometry was carried out on a Becton-Dickinson 
Accuri C6 model flow cytometer. The DHE fluorescence indi-
cated was the direct output of the FL2A (red fluorescence) 
channel without compensation. A total of 100,000 cells were 
analyzed for each curve. 
 
HeLa cells culture and transfection 
The cervical carcinoma HeLa cell lines were cultured in DME 
supplemented with 10% FCS and L- glutamine. Transfection of 
HeLa cells was performed using Lipofectamine 2000 (Invitro-
gen). Bcl-xL, shTaz, and shCont stable HeLa cell lines were 
generated by transfection with pcDNA3/Bcl-xL, pSUPER/shTaz, 
or pSUPER/shCont, respectively, and selected in G418 [67]. 
The revertant shTaz1R cell line was generated by cotransfect-
ing shTaz1 HeLa cells with pLpC vector (carrying a puromycin 
resistance gene), and pcDNA3/Taz mut and stable clones were 
selected in the presence of puromycin [67]. 
 
xCELLigence real time cellular proliferation measurements 
Experiments were carried out using the xCELLigence RTCA DP 
instrument (ACEA Biosciences, Ozyme, France) placed in a 
humidified incubator at 37°C and 5% CO2. Cell proliferation 
and cytotoxicity experiments were performed using 16-well 
plates (E-plate, Ozyme, Montigny le Bretonneux, France). The 
microelectrodes attached at the bottom of the wells allowed 
for impedance-based detection of the attachment, spreading 
and proliferation of the cells. Initially, 180 μL of cell-free 
growth medium (10% FBS) was added to the wells. After leav-
ing the devices at room temperature for 30 min, the back-
ground impedance for each well was measured. Cells were 
harvested from exponential phase cultures by a standardized 
detachment procedure using 0.05% Trypsin-EDTA (Invitrogen). 
Flow cytometry was used to count the cells and test their via-
bility (FSC versus propidium iodide staining). 5000 or 7500 

cells in 20 μl were added in each well. After leaving the plates 
at room temperature for 30 min to allow early cell attachment, 
in accordance with the manufacturer’s guidelines, they were 
locked in the RTCA DP device in the incubator and the imped-
ance value of each well was automatically monitored by the 
xCELLigence system and expressed as a Cell Index value (CI). 
Water was added to the space surrounding the wells of the E-
plate to avoid interference from evaporation. For proliferation 
assays, the cells were incubated during 120h for toxicity in 
growth medium (10% FBS) and CI was monitored every 15 min 
during the whole duration of the experiment. Four replicates 
of each conditions were used in each test. After an initial as-
sessment of the concentration of cycloheximide which would 
be non-toxic to the ShWT1 cells, we used a test of prolifera-
tion in presence and absence of low doses of cycloheximide (1 
pM to 100 pM) either prior to cell seeding or after an initial 
adhesion phase and at an early proliferative step (at 24-26 
hours). All experiments were conducted over 240 hours. All 
plots were normalized to the Cell Index. 
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