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ABSTRACT Cardiolipin (CL) optimizes diverse mitochondrial processes, includ-
ing oxidative phosphorylation (OXPHOS). To function properly, CL needs to be
unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-
function mutations in the TAZ gene are responsible for the Barth syndrome
(BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished
OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein
synthesis, either chemically with the use of cycloheximide or by specific ge-
netic mutations, fully restores biogenesis and the activity of the oxidative
phosphorylation system in a yeast BTHS model (taz1A). Interestingly, the de-
faults in CL were not suppressed, indicating that they are not primarily re-
sponsible for the OXPHOS deficiency in tazlA yeast. Low concentrations of
cycloheximide in the picomolar range were beneficial to TAZ-deficient Hela
cells, as evidenced by the recovery of a good proliferative capacity. These
findings reveal that a diminished capacity of CL remodeling deficient cells to
preserve protein homeostasis is likely an important factor contributing to the
pathogenesis of BTHS. This in turn, identifies cytosolic translation as a poten-
tial therapeutic target for the treatment of this disease.

INTRODUCTION

The Barth Syndrome (BTHS) is a raf#kéd recessive
mitochondrial disorder that is characterized bgrdiac and
skeletal myopathiesgrowth retardation, hypocholestete
emia,increased urine levels of@ethylglutaconic acid and
high susceptibility to baterial infections, due to cyclic ne
tropenia [1-3]. This disease is caused by mutationsan T
fazzin, a mitochondrial protein involved in the remodeling
of cardiolipin (CL). This phospholipid is mainly found in
mitochondria, [4-10] where it optimizes nunerous po-
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cesses including oxidative phosphorylation (OXPHOIS)
13], fusion[14], fission[15, 16] protein import[17, 18]
iron-sulfur cluster biogenesid19], mitophagy [20-23],
apoptosis [7, 2328] and the transport of metabolites
across the mitochondrial inner embrane[6, 17, 2936].
Tafazziris an acyltransferase required for the maintenance
of unsaturated carbostarbon bonds in CL fatty acyl chains
[1, 3741]. Lossof-function mutations in Tafazzin lead to
reduced levels of unsaturated CL and the accumulation of
CL species with an incomplete set atyfaacyl chains (such
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as monolysocardiolipin, MLC4R-44]. This in turn results
in multiple mitochondrial alterations that ultimately co-
promise the OXPHOS capa¢y, 4548].

Simple model organisms such Saccharomycesere-
visiae or baker's yeast are an important resource for the
study of mitochondrial diseases. Mitochondria frotmis
single-celled fungusand humans show many similarities
[49-53]. Being easily amenable to genetic manipulation of
mitochondrial function[54, 55} and owing to the ability of
yeast to survive the loss of oxidative phosphorylation;
yeast models of human mitochondrial diseases can be eas
ly created and kept alive when provided with fermentable
substrateg56, 57] The common respiratory growth defec
of these models enables largeale screening of genetic
and pharmacological suppressdi¥-59]. Yeast has in this
way already pointed to seval potential druggable ther
peuticintervention points, such as the oxodicarboxylic acid
carrier [60] and mitochondrial protein imporf61], among
others.

Herein wereport that reducing cytosolic protein By
thesis preserve©XPHO® CL remodeling deficient yeast
and improves the growth rate and viability of humgleLa
cells lacking Tafazzihis study sheds new light on the
pathogenesis oBTHSand identifies cytosolic protein By
thesis as a potential intervention point for the treatment of
the disease

RESULTS

Decreasing cytosolic protein synthesis improves respira-
tory growth of taz1A yeast

We[60] and otherg[62] showed that yeast cells lacking the
gene encoding Tazlpagln) grow poorly on respiratory
carbon sources at 36°C, compared to the viyide (WT)
TAZ1 strain. Using a drug screening procedure we prev
ously described58], we found that cytosolic protein ay
thesis inhibitors such as, cycloheximide (hereafter abbrev
ated as CHX), anisomycin and emetine suppressed this
phenotype in a doselependent manner. In he tests
shown in Fig. 1Aaz1n cells freshly grown by fermentation
in glucose were spread on plates containing ethano$-(re
piratory carbon source) and then exposed to paper disks
spotted with the drugs dissolved in DMSO. After five days
of incubation at36°C, halos of enhanced growth appeared
around the filters, whereas DMSO alone had no effect. In
this assay the compounds diffused into the medium; e
plaining why growth was improved only at some distance
around the filters, below which it was totally abbgedue to

a too high concentration of the protein synthesis inhibitors.
CHX was active at ZD fold lower concentrations eo-
pared to anisomycin and emetine (Fig. 1A). The optimal
rescuing concentration range of CHX was determined by
growth tests in liqguidmedia containing 2% ethanol and
0.5% galactose, at 36°Cftek consumption of the gala
tose, which is a fermentable substrate, growth tazin
yeast was much less efficient compared to thd, owing

to its failure to properly express mitochondrial functio
(Fig. 1B). The best growth improvementtaZ1n yeast was
observed in the presence of 10 nM CHX. At this coneentr
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tion, growth of the wild type was unaffected (Fig. 1B).
Pulse labeling of proteins with *Smethionine and %-
cysteine revealed that the ta of cytosolic protein synts

sis was decreased by about 508ctazln yeast grown in
the presence of 10 nM CHIX, comparison to the WT (Fig.
1C). Interestingly, cytosolic translation was alreadsy d
creased in the mutant grown in the absence of the drug by
about 35%, possibly as a means to attenuate a protein
stress inducedby a lack in CL remodeling (see below).

If CHX is a weldnown inhibitor of cytosolic translation,
one cannot exclude that it lsaother effects in cells that
could be responsible for the improved respiratory growth
of tazin yeast.We therefore tested the effects otazln
yeastof null mutations in the geneREIland RPL6Bhat
are known to partially inhibit cytosolic protein synsis by
20% and 30% respective]§3, 64. The double mutants
tazlpreilnandd | T mp ghNeWwlefficiently on respirat-
ry carbon sourceg¢Fig. 1D, E), anshowed a 50% drop in
the rate of protein synthesis (Fig. 1C). These daia-
firmed that the beneficial effect of CHX tazin yeastre-
sulted from a decreased rate of protein synthesis.

Decreasing cytosolic protein synthesis improves mtDNA
maintenance in tazlAyeast

We previously showed thaazin yeast grown by ferme-
tation at 28T, i.e. in conditions where the presence of
functional mtDNA is not indispensable, has an increased
propensity to produce’ 7°° cellsissued from large del
tions in the mitochondriaenome (60%s5% in the WT)
[60]. The double mutantstazin reiln and G I T mn
produced five to ten times less/" ° cellsthan tazin yeast
in glucose cultures (Fig. 1F). Thus, partially decreasiog cyt
solic translation preserves a proper maintenance of mtDNA
in CL deficient yeast cells.

Reducing cytosolic translation does not restore CL remode
ing in tazh yeast

As reported[39, 60, 62] mitochondia from tazin yeast,
compared to those from the WT, have 50% less CHpll2
higher content in phosphatidylinositol (PI), whereas gho
phatidylethanolamine (PE) and phosphatidylcholine (PC)
accumulated normally (Fig. 2A). Additionally, the remaining
CL pecies are less unsaturated as suggested by the d
creased levels in oleic acid chains (C1&nd increased
stearic (C18:0) and palmitic (C16:0) groups compared to CL
molecules extracted from the WT (Fig. 2Bjrainstazin
reifn andd I T mp  sNAwédcvery similar phospholipid
profiles (Fig. 2A, B), inditiag that mitochondrial function
recoveryin tazln yeastupon partial inhibition of cytosolic
translation did not result from an enhanced production of
mature CL species.

Partially decreasingcytosolic protein synthesis fullye-r
storesOXPHO® tazIn yeast

As we have showf60], the reduced ability ofazl)n yeast

to grow at 36°C in 2% ethanol + 0.5% galactose (shown in
Fig. 1B)correlated with a decreased rate obxygen cor+
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FIGURE 1: Partially decreasing cytosolic translation in Taffazin-deficient (taz1A) yeast improves respiration-dependent growth and mtDNA maintenance. (A)
tazln yeast cells were spread as dense layers onto rich ethanol solid media and then expst&ietfilters spotted withcycloheximide, anisomycin or &n
tine (dissolved in DMSOJhe plates were scanned after 5 days of incubation at 36°C. The filter at the top left was spotted with DMSO alone ta pemgid
tive control. (B) Determination in liquid cultures of CHX concentrations that optimally resazdn & S+ ad® / 2VYLX SGS &y d&Si
galactose + 2% ethanol supplemented or not with CHX at the indicated concentrations were inoculated with taZTljacells pregrown in CSM containing
2% glucose at 28°C. The cultures were performed at 36°C and cells densitigs.{@aken over a period of 36 hour€) Rate of cytosolic protein synthesis
Total proteins and mitochondrial proteins were labeled witmixture of F°Stmethionine and *S}cysteine for 20 min in whole cells from wild tygazin
reiin, G I T mp  aNdtdzlp Weast grown for 24 hours in rich 0.5% galactose + 2% ethanol ate&8&f@zin cells grown in the same conditions in presen
of 10 nM cycloheximide (CHX). After the labeling reactions, total protein extracts were prepared and separatedP BBERB a 12% polyacrylamide gel |
ug per lane). The gels were dried and analyzed wRhasphorlmager. Quantification was performed using Image J. Data are expressed in % relative to
(n=3). The shown data are cytosolic protein synthesis rates (total minus mitochondrial protein synthesis rates). Stagstgialwas done with Tuk@ya
(*P<0.05; **P<0.01; ***P<0.001; ***P<0.0001)D) Genetic ablation oREI1(reiln) or RPL6MWrpl6bn) improves respiratory growth aézin yeast.WT,taz1n,
tazipreifnanddi I T mp  céldfeshly grown at 28°C in rich glucose were seriallfediland spotted onto rich ethanol and glucose plates. The plates v
scanned after 4 days of incubation at the indicated temperat(EpGrowth of WT,taz1n, tazin rein and i | T mp  sididircliquid complete synthetic
media containind).5%galactose + 2% ethanol at 36°C. The cultures were inoculated with cells grown in CSM containing 2% glucose at 28°@sWerel
performed at 36°C and cell densities @) taken over a period of 60 hour§) Genetic ablation oREI1(reiln) or RR-6B(rpl6bn) intazin yeast preserves
mtDNA maintenanceProportions of k ° cells produced in glucose cultures at 28°C of strdifistazn, tazin reip, andii | T mn  wetkdeternjmed using
the procedure described if60] (n=3p 5+ G+ | N& SELINB&a&ASR Ay 2z NBfFGA@S (G2 GKS 2¢ |yR
***P<0.001).

OPEN ACCESS | www.microbialcell.com 222 Microbial Cell | MAY 2018 | Vol. 5 No. 5



M. de Taffin de Tilquest al. (2018 Tafazzin deficiency compensation

sumption and diminished levels of key components i

A
volved in the transfer ofelectrons tooxygen, including
complexes HV and cytochromes. Accumulation of these 60 - EwT
proteins (Fig. 3A, B) and oxygen consumption measured [Jtaz14

with either NADH or AscorbafEMPD as electron donors
were substantially improved after eliminatinEI1 or
RPL6BFig. 3C) or growintazIn yeast in the presence of
10 nM CHX (Fig. 3D). Consequently, the rate of mitacho
drial ATP synthesis was restored to almost normal levels
(Fig. 3E).

These observations were corroborated by monitoring
changes in mitochondrial membrane potenti@ § Wwith
Rhodaminel23. As we showefB0], adding ADP to respi
ing tazIln mitochondriadid not decreasen Adue to their

Total phospholipids (%)

50 1 [Jtaz1Arei1A
taz1A rpl6bA

poor capacity to synthesize ATP. Consistent with their good B

ability to produce ATP, those from straitez1n reiln and 60 - ‘
G117 mp @fficilinity rgsponded to ADP as WT it E}’gm =
chondria (Fig. 4). Furthermore, after a subsequent addition — 50 1 taz1Areila

of KCN, tdblock the respiratory chaim Acollapsed in one % taz1A rpl6bA

single rapid phase itazln mitochondria, whereas a regsi = 401

ual potential was preserved in those fro@z1n reiln and '» 30 A

GF T mn anNdWTyeagts. This residual potential is due -

to the pumping of protons by ATP synthase, coupled by the ;. 20 -

hydrolysis of the ATP that accumulated in the mitochéndr o

al matrix during phosphorylation of the added ADP, as ev 10 ﬂ% i*l—%
denced by the loss of this potential by ibliing ATP sy o 4

thase with oligomycin (Fig. 4).

Taken together, these observations demonstrate that
partially decreasing cytosolic translation preserves the
biogenesis and activity of the OXPHOS system ineCL r
modeling deficient yeast.

FIGURE 2: Genetic ablation of REllor RPL6Bn taz1A yeast does

not restore cardiolipin remodeling. Lipids were extracted fromr
mitochondria isolated fromWT (black bars)tazin (open bars)

) . ) ) . tazln reiln (grey barshndtazin rplébn (striped bars) cells growr
Partially decreasingytosolic protein synthesis suppresses in CSM 0.5% galactose + 2% ethanol at 36°C until a densig «
0KS SyKFyOSR LINPRdAzOGAZ2Y 2F wWhm (A) Klatilielcdnidhgs of @65 (hhdsphatidylethanolamin
Defects in the mitochondrial respiratory chain often result  CL (cardiolipin), PI (phosphatidylinositol) and PC (phosphatiy!
in a higher production/accumulation of reactive oxygen line) within each strain(B) Relative fatty acid chain compositiol
species (ROS) owing to an enhanced diversion of etestro  ©f CL within each strain (16:0, palmitic acid; 16:1, paimitaleid;

from their normal pathway to oxygen, which was observed 18}?' Ste?(r; ""IC'?; fls;il: oleic gc"SFa“St'Cg' far;al;/SIS g""’ls don
. . . . with Krus i a osada ¥ gSR 0
in CL remodeling deficient ce[B5]. Thus, it was expecteql test (P<0.05; **P<0.01: **P<0.001). Data are expressed
that tazln yeast shguld produge less ROS after deleting mean + s.d. (n=4). The data for WT aaetin strains wee repot-

REIlor RPL6Br during growth in the presence of 10 nM ed previoushj60].

CHX, which was indeed observed (Fig. 5).

ShWT1 and ShTazR1 cells (Fig.6 AlVB)took advantage

of these differences to test the capacity of CHX at counte
acting the detrimental effects of a lack in CL maturation in
human cells. A large beneficial effect was observed at a 50
pM concentration of CHX. In the experiment shown in Fig.
6C, he drug was adde@4-25 hours after inoculating 200

W of media with 5000 cells. CHX induced &h48g phase,
after which the cells grew for a lorgsting period of 170

Decreasing cytosolic protein synthesis is also beneficial to
tafazzin-deficient human cells

We aimed to understand whether partially decreasing c
tosolic translation could also benefit human cells lacking
Tafazzin. To this end, we used our previously described
HelLacells, in which the TAZ gene was knocked down by
RNA interference (shTazl) and two control cell lines,
shWT1 and shTaz1R in which the expression of TAZ1 was

not inhibited. As reported, ShTazl poorly accumulataes T Phourst; before fdé':?( %nd t(:]etachlnt? from trr:ew SUpp%rt' In
fazzin, is defective in CL maturation, lmaseduced capacity € absence o eath was obse frore rapd-

G2 +aa20AlGS NBa LIk N3 G2Ne ORRY T2 ’ﬁ?r %“E@‘ifgr‘)\w? theﬁpﬂf’% LIk N
42Y340Q35 LINBRAZOSA | oy2NNI ffe“om;%’rf(g
higher content in mitochondria compared to shwT1l and €
shTazlR, as do cells fr@TH$atients[24, 48, 66]

Herein we report that ShTazl cells proliferate four
times slower and die more rapidly, in comparison to

era
igure se observatlons ngOate that arpa
tial decrease in cytosolic translation is, astaz1n yeast,
beneficial tohuman cells defective in CL remodeling.
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FIGURE 3: Partially decreasing cytosolic translation preserves oxidative phosphorylation in taz1A yeast. The experiments here describe
were performed using mitochondria isolated from cells grown for 24 hours at 36°C in CSM containing 0.5% galactose + R%uptiean
mented or not as indicated with 10 nM CHX, until a density-8fGQonm (A, B) Steadystate levels of proteins involved in the transfer «
electrons to oxygen(A) Proteins were extracted from the mitochondrial samples using 2 g digitonin per g of proteins. The supercon
-1V and [1-1V; were revealed by the complex IV activity afseparation by CIPAGE or by western blot with antibodies against Cox
BN-PAGE gel¢B) Left panel. Total mitochondrial protein samples were resolved byFREE (569 per lane) and probed with antibodie
against the indicated protein§he shown gsl are representative of at least 3 experiment&gHR panel. Quantification using ImageJtso
ware. Levels of Cytc, Cox2, Atpl and Sdh2 are normalized to Porlp and expressed relativiCjaSéfktic ablation oREIlor RPL6BN
tazln yeastpreservesnitochondrial respiration. On the left are thates of oxygen consumption from NADH (4 mM) alone (state 4), ¢
further addition (150>M) of ADP (state 3) or CCCP>) (uncoupled respiration). The data are expressed in % of WT state 4 respi
(mean £ s.d, n=4). On the right are the oxygen consumption rates from electrons delivered directly to complex IV by ascdb
mM/TMPD 1.4 mM in the presence of CCCP. Data are expressed relative to the WT (mean * @), Mitdghondrial respiration ipre-
served intazin yeast grown in the presence of 10 nM CHX. NADH was used as the electron donor, as described in pan¢E)CA{rR:
synthesis was measured using NADH as a respiratory substrate in the presence ochADPnlata are expressed as mean + s.d. (n=&)
tive to the WT. The data for WT atakz1n strains were reported previous[$0].

DISCUSSION creasing cytosolic translatiorAt low concentration (50

While a general inhibition of cytosolic protein synthesis
would obviously be detrimental to the cell, our studg-r
veals that a partial (50%) decrease in this activity preserves
mtDNAmaintenance and the biogenesis and activity of the
oxidative phosphorylation (OXPHOS) system in a yeast
model of the Barth syndrome, a mitochondrial disease
associated to defects in the remodeling of cardiolipin (CL).
The decreased mtDNA stability taz1n yeast occurred in
fermenting (glucose) cultures where the presence of this
DNA is not indispensable. With a respiratory carbon source
(glyceroal) tazin yeast cells lacking functional mtDNA were
much less abundant owing to their incapacity to proliferate
in these conditions. Thus, the respiratory deficiency of
tazln yeast does not result from a lack in mtDNA.
Importantly, CL remodeling was still deficienttazn
cells rescued by a partial inhibition of cytosolic translation
This finding has two importd corollaries: (i) the CL species
remaining in the mutant (50%sthe WT) are sufficient for
a proper biogenesis and functioning of the OXPHGS sy
tem, and (ii) theOXPHO8eficit is secondary to some fot
er cellular dysfunction(s) that can be suppresseddey

OPEN ACCESS | www.microbialcell.com 224

pM), CHX also improved proliferation of HelLa cellsi-def
cient in tafazzin whereas that of WT Hela cells was not
modified, which clearly demonstrates that growtimn-
provement resulted from a compensan of the lack in
tafazzin. Thus yeast and human CL remodeling deficient
cells face similar difficulties that can be attenuated by ta
geting cytosolic translationThese finding reveal that a
diminished capacity of CL remodeling deficient cells & pr
sewve protein homeostasis is likely an important factor
contributing to the pathogenesis of the Barth syndrome.
This in turn, identifies cytosolic translation as a potential
therapeutic target for the treatment of this disease.
Previous work revealed thatecreasing cytosolic traa
lation can also rescue yeast models of adPEO (autosomal
dominant progressive external ophthalmoplegia) caused by
mutations in ANT, a protein that exchanges adenine exucl
otides across the mitochondrial inner membraf@s]. In
addition to a defective exchangeof adenine nucleotides,
these mutations compromise the impermeability toopr
tons of the inner membrane. Consequentlya sufficient

Microbial Cell | MAY 2018 | Vol. 5 No. 5
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FIGURE 4: Mitochondrial membrane potential. Variations in mitochondrigh Awere monitored by fluorescence quenching of Rhodam
123, using intact, osmoticalfyrotected, mitochondria isolated from Wigz1n, tazn reiln andtazin rplébn cells grown in CSM containin
0.5% galactose + 2% ethanol at 36°C until a density300Rqonm The additions wer&5>M ADP, 0.5-g/ml Rhodamine 123, 75g/ml mi-

tochondrial proteins (Mito), 1&1 ethanol (EtOH), 2 mM potassium cyanide (KCNMACCCPRcarbonyl cyaniden-chlorophenyl hydrazone’
and 4>g/ml oligomycin (oligo). The shown tracings are representative of four experimental trials. The data for \téElanstrains were

reported previously60].

electrical potential cannot be maintained across this mem
brane and this impedes many proteins to reach theasrg
nelle. This has deleterious consequences, not only fier m
tochondria, but also for the cytosol that is then confronted
with the overaccumulation and the misfolding of roit
chondrial precursor proteing63]. This protein sess,
which was termed mitochondrial precursor over
accumulation stress (MPOS), was shown to induce a-cell
lar response, named unfolded protein response activated
by mistargeted mitochondrial proteins (UPRam), that is
mainly characterized by a decreasederaf cytosolic po-
tein synthesis and a faster rate of protein clearance by the
proteasome[68, 69] Consistent with these findingsjuta-
tions in proteins directly involved in the transport ofopr
teins into mitochondria were found to similarly poison the
cytosol with mitochondrial proteins triggering the cell to
diminish the production and stimulate théegradation of
proteins[69]. The significant drop (35%) in cytosolic san
lation in tazln yeast is an indication that a lack in @ r
modeling could as well lead to the congestion of theoeyt
sol with misdocalized mitochondrial proteins.

Considering the numerous roles 6Lin mitochondria,
it might be that a lack in the remodeling of shphospholp-
id affects the capacity of mitochondria to import proteins,
and thereby makes other compartments of the cell more
susceptible to protein stress. In support to this hypothesis,
loss of CL remodeling was shown to partially compromise
the biogenegs of the protein translocase (TOM) and the
sorting and assembly machinery (SAM) of the outeromit
chondrial membrang18, 70] In another study{36], no
evidence was found for a decreased preprotein accamul
tion in vitro with tazl-deficient mitochondria. However,

OPEN ACCESS | www.microbialcell.com 225

because these assays used minute amounts of preproteins
it might be difficult to detect in this way a partially dimi
ished prdein import capacity.

The recovery of mitochondrial function bazln yeast
by a partial decrease of cytosolic translation is in line with a
recent study showing thaCLhas an important role in
promoting the induction of a mitochondriab-cytosolic
stress response (MCSR) that enables the cell to improve
protein homeostasis in both compartmenfg1]. Consis
ently also,it was shown thatapamycin, a specific inhibitor
of the mTOR signaling pathway that regulates sevexal e
tra-mitochondrial cellular pathways among which protein
synthesis, robustly enhances survival and attenuates the
disd & Pm@giession in a mouse model and patient cells of
the Leigh Syndrome, one of the most devastatingomit
chondrial disorder§72, 73]

Clearly, beyond a certain level of mitochondrial damage,
the protein stress responsive pathways may not beisuff
cient. This may explain that in additido its spontaneous
35% drop in protein synthesitaz1n yeast requires a fu
ther (15%) decrease in this activity to be effectivelg-re
cued. Whether a general protein synthesis inhibition or a
reduced production of specific proteins is beneficial to CL
remodeling deficient cells is an interesting and important
issue. In this respect, it is interesting to note tt@érstet
al. found that ribosomal protein paralogs specificallydno
ulate translation of mitochondrial precursor proteifig4].
Such observations hold promise for the development of
more targeted therapeutic approaches with less undasir
ble sideeffects to preserve protein homeostasis in cells
poisoned by the oveaccumulation in the cytosol of nat
chondrial protein precursors.
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FIGURE 5: Partially decreasing cytosolic translation in tazlA

yeast preserves a normal production of ROS. The cells were
grown in CSM containing 0.5% galactose + 2% ethanol at 36°
48 hours. At the indicated timefOS levels were measured |
flow cytometry using dihydroethidium as a probe. The data

expressed in % relative to the WT at TO (n=3). Statistical ane
gra R2yS 6AGK ¢dzl SeqQa GSad

**+*P<(0.0001). The data for WT artdz1n strains were reported
previously[60].

MATERIALS AND METHODS

Growth media

The following media were used for growing yedstrmena-

ble YPAD media containing 1% (w/v) yeast extract, 1% (w/v)
bacto peptone, 40 mg/L adenine and 2% (v/v) glucose; Respi
atory rich media YPAEthanol containing 1% (w/v) yeast extract,
1% (w/v) bacto peptone, 40 mg/L adenine and 2% (v/vaeth
nol; Nonfermentable = complete  synthetic  media
CSM/gal/ethanol containing 0.17% (w/v) yeast nitrogen base
without aminoacids and ammoniursulfate, 0.5% (w/v) ra-
monium sulfate, 0.5% (w/v) galactose, 2% ethanol and 0.08%
(w/v) of a mixture of aminoacids and bases fréimrmedium.
Solid media contained 2% (w/v) agar.

Construction of strainst a z 1 A anhdadz1A tei

These strainsvere constructed by deleting entirely the open
reading frame oRPL6B or REWith the KanMX marker using
a described procedurg75] in tazin mutant (MATa ade21
ura31 his311, 15 trpl1-1 leu23,112 canil00, taz1l::TRPL
For te construction of the straiazin rplébn, the KanMX
cassette was amplified using primers pFAGm: Rpl6llel-F

Tafazzin deficiency compensation

TCT TCA GCA)®¥ere used to verify the deletions BfElland
RPL6B by PCR.

Yeast-based drug assay

0.125 OD of exponentially growing cell wdremogeneously
spreadwith sterile glass beadsn a square Petri dish (12 cm x
12cm) containing solid YPA ethanol medium. Sterile filters
were deposited on the plate and spotted with cycloheximide
(purchased from Sigma), anisomycin (purchased from Sigma),
and emetine (purchased from Sigma) dissolved in DMSO.
Growth improvement was assessed after several days of inc
bation at 36°C.

Bioenergetics experiments

The mitochondria were prepared by the enzymatic method as
described[76]. Protein concentrations were determined by
the Lowry method[77] in the presence of 5% SDS. Oxygen
O2yadzyLldirazy NI} dGSa
chondria using a Clarke electrode in the respiration buffer
(0.65 M mannitol, 0.36 mM ethylene glyduk(2
aminoethylether)b ¥ b X tetrazdetic, 5 mM trigphosphate,

10 mM trismaleate, pH 6.8) as describ§d8] (see legend of
Fig. 3 for the concentrations of reagents used). Variations in

YAG2O0K2YyRNALFE GNIyaYSYONIyS
in the same regiration buffer, by monitoring the quenching of
NK2RIFIYAYS wmuo ¥t dz2 NB3& Qo485

Y'Y | yRof 625 sm under constant stirring, using a FLX
Spectrofluorimeter (SAFAS, Monaco), as descrig® ATP
deyikSara NIYiGSa gSNB YSI adz2NBR
dria in a 2ml thermostatically controlled chamlpeat 28°C in
respiration buffer, in the presence of 4 mM NADH and 1mM
ADP as describefB0]. Aliquots were withdrawn from the
oxygraph cuvette every 15 seconds and supplemented with
2.5% (w/v) perchloric acid, 8.5 mM EDTA to stop the reaction
and then neutralized to pH 6.8 by adding 2N KOH, 0.3 M
MOPS. ATP was quantified using a luciferciferase assay
(ATPLite kit from Perkin Elmer) on a LKB bioluminometer. The
participation of the H-ATP synthase in ATP production was
assessed using the same protocol, in the presence of oligomy
cin (3pg/ml).

BN/CN-PAGE & SDS-PAGE

Blue native BNPAGE and clear native ®AGE experiments
were carried out as describef81], using mitochondrial e
tracts solubilized with digitonin (2 gr per gr protein) run i 3
12% cotinuous gradient axylamide gels. The igel complex

IV activity was revealed using a solution of Tris 5mM pH 7.4,
diaminobenzidine 0.5 mg/ml, cytochrome 0.05 mM. The
proteins were also analyzed by Western blotting on

(CTT TCT TGA ACT TGG AAG AGA AGC AAA TAT ATT CAA Ccyfvinylidene difluoride) membranes as descriléd]. Pd-

cgg atc ccc ggg tta att aa) aRgl6bdel-R (CTA TTT TAA ATC
ATT TAT AAT TTT TTC AGVT AllCgaa ttc gag ctc gtt taa ac)
(the sequences in capital letters are homologous to Ri?_6B
flanking regions, those in lower case enable amplication of
KanMX For the construction of the straitazin reiln, the
KanMX cassette was amplified witlpFA6aKan: ReidelF

yclonal antibodies raised against yeast ATP synthase were
used atadili A2y 2F wmYpnnnn
lours, IBGC, Bordeaux, Francel00® for cytochromec (gift

from S. Manon, IBGC, Bordeaux, France); 1:5000 for succinate
dehydrogenase Sdh2 subunit (gift from C. Dallabona, Univers
ty of Parma, Italy). Monoclonal antibodies against porin and

(CAT TAG AAG TCA AGA AGA GAG CAT ATC AGT AAC AAT Box@ (from Molecular Probes) were used at a itutof

cgg atc ccc ggg tta attaa) aRkitdelR (GCG ACA AAA TAC

1:5000. Nitrocellulose membranes were incubated with pero

TAA AAA AAG TAG TGC AAA AAG AA gaa ttc gag ctc git taa adflaselabeled antibodies (from Promega) at a 1:2500 dilution,

The primerRpl6bFbis CTG CGC TTC CGT TCA G(RpIBb),
Rbs (CGA TGA CCT GAT CTT GAACREILFbis GTG GTG
TAG CTA TTT GTA CAT G),ReitiRbis (CAA CAT CTT CAG
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and analyzed by electrochemiluminescence. Quantification of
the protein signals was performed with the ImageJ software.
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FIGURE 6: CHX improves cell proliferation and viability of human Tafazzin-deficient cells. These experiments used our previously descrit
HelLa cells in which TAZ gene has been knocked down by RNA interference (shTazl) and two control cell lines, shWAELRnish whict
expression of TAZ1 is not inhibitggl7]. (A) Growth curves in 20QL wells inoculated with 5 000 cells. After reaching a plateau, the cell:
and detach from their support. S1, S2 and S3 are the slopes of the proliferatiorfataach cell lines(B) Relative slopes (1/h) deduce
from the proliferation curves shown in panel (&) xCELLigence recording of ShTaz1 proliferation in absence or presence of CHX at-a
tration of 50 pM. CHX was added (black arrow) after u@4r adhesion step. Theultures were inoculated with§ nn OSf £ & A
The optimal Cell Index values are indicated along the curves as well as the time (in hours) taken to reach the infléxidmeguanizontal
red bar stands for the 48 hoursgghase induced by CHX. Four independent experiments with 4 wells for each growth condition hav
done (16 wells in total for establishing mean values). the +SD is directly drawn on the top of the curves (in black foarghifiazed for
SgTazl + 50M CHX)(D) xCELLigence recording of ShWT1 proliferation in absence or presence of CHX at a concentration of 50
cultures were inoculated with 5 n 1~ O S £ f iellsAGHX was addesl pefore the binding of the cell to the substrate in this case in
to avoid the perturbations induced by the injection of CHX along the trace; the +SD is directly drawn on the top of théiclnaek for
ShWT1 and in red for $gz1, there is no significant variation).

In vivolabeling of mitochondrial translation products nine plus TSS] cysteine, cells were first treated with 7,5 mg/ml

The indicated strains were grown to early exponential phase
(OD/ml of 2) in 20 ml of rich ethanol/galactose media at 36°C.
The cells were harvested by centigiation and washed twice
with a minimum medium containing 2% ethanol and 0,5%
galactose, supplemented with histidine, tryptophan, leucine,
uracil and adenine (50 mg/liter each). To evaluate total-pr
tein synthesis, cells were resuspended in 1 ml of the esam
medium with the addition of 55 pCi of°B] methionine plus
[*°S] cysteine (Amersham Biosciencasy incubated for 20
min at 36C. To evaluate mitochondrial protein synthesis the
same procedure was followed but before addiﬁisﬂ metho-

OPEN ACCESS | www.microbialcell.com 227

cycloheximide during 5 minutedfter the labeling reactions,
total protein extracts were prepared and quaiid using the
Lowry method The proteins were separated by SBSGE on

a 12% polyacrylamide gefansferred onto a nitrocellulose
membrane and analyzed with a Phosphorimager. Quaatific
tion of radioactive proteins was performed using the software
Image]83].

Lipid analyses

Mitochondrial lipids were analyzed as descrijé@]. In sum-
mary, the lipids were extracted witl2 ml of chlop-
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form/methanol (2:1, viv). After centrifugation, the organic OStt & Ay wn >f 6SNB I RRSR Ay SI ¢
phase was isolated and the remaining lipidere further e- at room temperature foi30 min to allow early cell attachment,
tracted twice by adding 2 ml of chloroform to the aqueous Ay | OO2NRIyO0OS gAGK GKS YIFydzZFI O
phase. The organic phases were pooled and evaporated to locked in the RTCA DP device in the incubator and thedmpe
dryness. The lipids were then resuspended in ahlor ance value of each well was automatically monitored by the
form/methanol (2:1, v/v). Respective volumes equivalent to  XCELLigence system and expressed aslldr@ex value (ClI).
50 pg of acyl chias were spotted on silica plates, four times ~ Water was added to the space surrounding the wells of the E
for each strain. Polar lipids were separated by one dimemnsio plate to avoid interference from evaporation. For proliferation
al TLC using chloroform/methanoiropanol/methyl ae- assays, the cells were incubateldiring 120h for toxicityin
tate/0.25% KCI (10:4:10:10:3.6, by vol.) as a solM&d{. The growth medium (10% FBS) and Cl was monitoredyet¥/8min
lipids were located by immersing the plates in a solution of during the whole duration of the experiment. Four replicates
0.001%(w/v) primulinein PBS, followed by visualization under  of each conditions were used in each test. After an init&al a
UV light. The zones of the gel corresponding to PE, CL, Pl andsessment of the concentration of cycloheximide which would
PC were then scraped and added to 1 ml of methano¥2.5 be nontoxic to the ShWT1 cells,emused a test of prolifer
H,SQ containing 5>g of heptadecanoic acid methyl ester as a  tion in presence and absence of low doses of cycloheximide (1
standard. The lipid mixtures weiacubated at 8aC for 1 h, pM to 100 pM) either prior to cell seeding or after an initial
and 1.5 ml of water and 400 pl of hexane were then added. adhesion phase and at an early proliferative step (at284
After centrifugation, the hexane phase containing FAMHES (fa  hours). All experiments were conducted over 240 hours. All
ty acid methyl esters) was isolated. Separation of FAMES was plots were normaked to the Cell Index.
performed as describe[89].
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