Supplemental Table 1. Yeast strains used in this study.

Strain	Genotype*	Source
RSY10		[1]
RSY1696	cnc1::KANMX6	[2]
RSY1701	med13::HIS3	[3]
RSY1707	mid2::HIS3 mtl1::TRP1 wsc1::KANMX4	[4]
RSY1770	grr1 Δ ::his5 ⁺	[5]
RSY1726	cdk8Δ::KANMX4	[3]
RSY1949	gal83::KANMX4	This study
RSY2080	snf1::KANMX4	This study
YPDahl17	sak1::KANMX4	[6]
MML1445	sip1::natMX4 sip2:: KANMX4	[7]
MSY557	sip1::HIS3 sip2:: HIS3 gal83::HIS3	[8]
JGY1		[9]
JGY4	psk1::HIS3 psk2∆:: KANMX4	[10]
РЈ69-4	LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ gal4∆ gal80∆	[11]

Genotype of all strains is *MATa* ade2 ade6 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 except YPDahl17, MML1445, JGY1 and JGY4 which are *MATa* ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 and PJ69-4 which is *MATa* trp1-901 leu2-3,112 ura3-52 his3-200 gal4 Δ gal80 Δ .

Supplemental Table 2. Plasmids used in this study.

Plasmid Name	Gene	Epitope Tag	Marker	Promoter	2μ/ CEN	Reference
рВК38	CNC1	YFP	URA3	ADH1	CEN	[12]
рКС337	CNC1	CNC1	TRP1	ADH1	CEN	[13]
pKC801	MED13	3HA	URA3	TRP1	CEN	[5]
pLR166	CNC1 ^{5266A}	CNC1	TRP1	TRP1	CEN	[14]
рКС803	MED13	3HA	LEU2	ADH1	CEN	[5]
рКС805	MED13 ^{571-650deg∆}	3HA	URA3	ADH1	CEN	This study
pKC814	MED13 ^{742-844deg∆}	3HA	URA3	ADH1	CEN	This study
pDS8	GAL4AD-MED13 ⁵⁷¹⁻⁹⁰⁶	1HA	LEU2	ADH1	2μ	[5]
pDS15	GAL4AD-MED13 ⁵⁷¹⁻⁶⁵⁰	1HA	LEU2	ADH1	2μ	[5]
pDS16	GAL4AD-MED13 ⁶⁵¹⁻⁹⁰⁶	1HA	LEU2	ADH1	2μ	[5]
pDS32	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	[5]
pDS44	GAL4AD-MED13 ^{571-650 S636}	1HA	LEU2	ADH1	2μ	This study
pDS51	GAL4AD-MED13 ^{571-650 S636, S634A}	1HA	LEU2	ADH1	2μ	This study
pDS55	GAL4AD-MED13 ⁵⁷¹⁻⁶⁵⁰ 5587A	1HA	LEU2	ADH1	2μ	This study
pDS56	GAL4AD-MED13 ⁵⁷¹⁻⁶⁵⁰ S58A7, S636A, S634A	1HA	LEU2	ADH1	2μ	This study
pDS45	NLS-Med13 ¹⁻³⁰⁶	1HA	LEU2	ADH1	2μ	This study
pDS46	NLS-Med13 ³⁰⁶⁻⁵⁷⁰	1HA	LEU2	ADH1	2μ	This study
pDS47	NLS-Med13 ⁹⁰⁷⁻¹⁴²⁰	1HA	LEU2	ADH1	2μ	This study
pDS52	NLS-Med13 ³⁰⁷⁻⁵⁷⁰	1HA	LEU2	ADH1	2μ	This study
pDS54	GST-Med13 ^{571-650,S608A}	GST	AMP	-	-	This study
pJG1215	HIS ₆ -PSK1-KD	HIS ₆	AMP	-	-	[10]
pUM504	CDK8	1HA	TRP	GPD	CEN	[15]
pACT2	GAL4AD	1HA	LEU2	ADH1	2μ	[16]
pAS2	GAL4BD	1HA	TRP	ADH1	2μ	[16]
pAS2-Grr1	GAL4BD-GRR1	1HA	TRP	ADH1	2μ	[17]
pAS2- Grr1ΔLΔF	GAL4BD-GRR1Grr1∆L∆F	1HA	TRP	ADH1	2μ	[17]
pJG1465	GAL4AD-MED13 ⁵⁰⁴⁻⁷⁰³	1HA	TRP	ADH1	2μ	[9]
pAS2-	GAL4BD-PSK1	1HA	TRP	ADH1	2μ	[9]
Psk1						
JG1193	Snf1	8Мус	URA3	Snf1	CEN	[18]
JG1338	Snf1 ^{K84R}	8Myc	URA3	Snf1	CEN	[19]
	Snf1	8Myc	URA3	GAL1-10	2μ	[19]
	Snf1 ^{K84R}	8Myc	URA3	GAL1-10	2μ	[19]
pNLS-HA	SV40 NLS	1HA	LEU2	ADH1	2μ	This study
Mt-Cherry	Mito-targeting	mCherry	TRP1	ADH1	CEN	This study
pRS314	-	-	TRP1	-	CEN	[20]
pRS316	-	-	URA	-	CEN	[20]

FIGURE S1: Phosphorylation of cyclin C is not required for degradation of Med13⁵⁷¹⁻⁶⁵⁰. (A) $cnc1\Delta$ cells (RSY1696) harboring degron⁵⁷¹⁻⁶⁵⁰ (pDS15) and either wild-type cyclin C (pKC337) or a vector control (pRS314) were treated with 0.4 mM H₂O₂ for the timepoints indicated and Med13⁵⁷¹⁻⁶⁵⁰-HA levels analyzed by Western blot. Tub1 levels were used as loading controls. (B) Degradation kinetics of the degron⁵⁷¹⁻⁶⁵⁰ constructs shown in (A). Values represent averages ± SD from a total of at least two Western blots from independent experiments. (C) As in (A) except that $cnc1\Delta$ harboring either wild-type cyclin C (pKC337) or a phospho-mutant (cyclin C S266A, pLR166) was examined. (D) Degradation kinetics of results shown in (C).

FIGURE S2: The PAS kinase can associate with Med13 but is not required for its H_2O_2 mediated degradation. (A) Y2H analysis of cells harboring the Med13 construct shown with either Grr1 or Psk1. PJ69-4 cells harboring the Med13-activating domain constructs shown and either pAS-Grr1 or pAS2-Psk1 which has previously been shown to interact with Med13⁵⁰⁵⁻⁷⁰³ [9]. The cells were grown on *-LEU, -TRP* drop out medium to select for both plasmids (left panel) or *-TRP, -LEU, -HIS –ADE* (right panel) to test for Med13-Grr1 interaction. **(B)** Wild-type (RSY10) and *psk1*Δ *psk2*Δ (JGY4) cells harboring Med13-HA (pKC801) were treated with 0.4 mM H₂O₂ for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as loading controls. **(C)** Degradation kinetics of the results shown in (B). Values represent averages ± SD from a total of at least two Western blots from independent experiments.

FIGURE S3: (A) Cells with the genotypes shown harboring Med13-HA (pKC801) were treated with 0.4 mM H_2O_2 for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as loading controls. (B) Wild-type (RSY10) cells harboring either degron⁵⁷¹⁻⁶⁵⁰ (pDS15) or with the mutations shown were treated with 0.4 mM H_2O_2 for the timepoints indicated and analyzed by Western blot. Tub1 levels were used as loading controls. (C) Control experiment for the co-immunoprecipitation analysis shown in Fig. 5D showing that cells harboring a vector control are unable to pull down Snf1-myc whereas Cdk8-HA can.

FIGURE S4. Upper panel: cyclin C is released from the nucleus following H_2O_2 stress in *med13* Δ cells harboring Med13^{571-650deg Δ} HA (pKC805) as the only source of Med13. Fluorescence microscopy of mid-log phase *med13* Δ harboring pKC805 and cyclin C-YFP (pBK38) were analyzed as shown before and after 0.4 mM H_2O_2 stress. Cells were stained with Dapi to visualize the nucleus. Lower Panel: as in upper panel except that the mitochondrial marker mCherry was also expressed. Bar = 13 μ M.

Supplemental References

1. Strich R, Slater MR, Esposito RE (1989). Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc. Natl. Acad. Sci. USA 86(10018-10022. doi: 10.1073/pnas.86.24.10018

2. Cooper KF, Mallory MJ, Egeland DB, Jarnik M, Strich R (2000). Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc Natl Acad Sci U S A 97(26): 14548-14553. doi: 10.1073/pnas.250351297

3. Khakhina S, Cooper KF, Strich R (2014). Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C. Mol Biol Cell 25(18): 2807-2816. doi: 10.1091/mbc.E14-05-0953

4. Jin C, Parshin AV, Daly I, Strich R, Cooper KF (**2013**). The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. **Oxid Med Cell Longev** 2013(320823. doi: 10.1155/2013/320823

5. Stieg DC, Willis SD, Ganesan V, Ong KL, Scuorzo J, Song M, Grose J, Strich R, Cooper KF (**2018**). A complex molecular switch directs stressinduced cyclin C nuclear release through SCF(Grr1)-mediated degradation of Med13. **Mol Biol Cell** 29(3): 363-375. doi: 10.1091/mbc.E17-08-0493

6. Ye T, Elbing K, Hohmann S (2008). The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. **Microbiology** 154(Pt 9): 2814-2826. doi: 10.1099/mic.0.2008/020149-0

7. Perez-Sampietro M, Casas C, Herrero E (2013). The AMPK family member Snf1 protects Saccharomyces cerevisiae cells upon glutathione oxidation. PLoS One 8(3): e58283. doi: 10.1371/journal.pone.0058283

8. Ye T, Elbing K, Hohmann S (2008). The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. **Microbiology** 154(Pt 9): 2814-2826. doi: 10.1099/mic.0.2008/020149-0

9. DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH (**2014**). A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. **Mol Biol Cell** 25(14): 2199-2215. doi: 10.1091/mbc.E13-10-0631

9. DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH (**2014**). A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. **Mol Biol Cell** 25(14): 2199-2215. doi: 10.1091/mbc.E13-10-0631

10. DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH (**2015**). PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. **Mol Biol Cell** 26(3): 569-582. doi: 10.1091/mbc.E14-06-1088

11. James P, Halladay J, Craig EA (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144(4): 1425-1436. PMID: 8978031

12. Cooper KF, Scarnati MS, Krasley E, Mallory MJ, Jin C, Law MJ, Strich R (**2012**). Oxidative-stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. J **Cell Sci** 125(Pt 4): 1015-1026. doi: 10.1242/jcs.096479

13. Cooper KF, Mallory MJ, Smith JB, Strich R (**1997**). Stress and developmental regulation of the yeast C-type cyclin Ume3p (Srb11p/Ssn8p). **EMBO J** 16(15): 4665-4675. doi: 10.1093/emboj/16.15.4665

14. Jin C, Strich R, Cooper KF (2014). Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Mol Biol Cell 25(8): 1396-1407. doi: 10.1091/mbc.E13-09-0550

15. Cooper KF, Mallory MJ, Strich R (1999). Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 19(5): 3338-3348. doi: 10.1128/mcb.19.5.3338

16. Van Criekinge W, Beyaert R (1999). Yeast Two-Hybrid: State of the Art. Biol Proced Online 2(1-38. doi: 10.1251/bpo16

17. Wang R, Solomon MJ (2012). Identification of She3 as an SCF(Grr1) substrate in budding yeast. PLoS One 7(10): e48020. doi: 10.1371/journal.pone.0048020

18. Simpson-Lavy KJ, Johnston M (**2013**). SUMOylation regulates the SNF1 protein kinase. **Proc Natl Acad Sci U S A** 110(43): 17432-17437. doi: 10.1073/pnas.1304839110

19. Strogolova V, Orlova M, Shevade A, Kuchin S (2012). Mitochondrial porin Por1 and its homolog Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell 11(12): 1568-1572. doi: 10.1128/EC.00127-12

20. Sikorski RS, Hieter P (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genet. 122: 19-27. PMID: 2659436