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Supplemental Table 1. Yeast strains used in this study. 

 
Strain 

 
Genotype* 

 
Source 

RSY10  [1] 

RSY1696 cnc1::KANMX6 [2] 

RSY1701 med13::HIS3 [3] 

RSY1707 mid2::HIS3  mtl1::TRP1  wsc1::KANMX4 [4] 

RSY1770 grr1∆::his5+ [5] 

RSY1726 cdk8∆::KANMX4 [3] 

RSY1949 gal83::KANMX4 This study 

RSY2080 snf1::KANMX4 This study 

YPDahl17  sak1::KANMX4 [6] 

MML1445 sip1::natMX4 sip2:: KANMX4 [7] 

MSY557 sip1::HIS3 sip2:: HIS3 gal83::HIS3 [8] 

JGY1  [9] 

JGY4 psk1::HIS3  psk2∆:: KANMX4 [10] 

   

PJ69-4 LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ gal4∆ gal80∆ [11] 

 

Genotype of all strains is MATa  ade2  ade6  can1-100  his3-11,15  leu2-3,112  trp1-1  ura3-1 except YPDahl17, 

MML1445, JGY1 and JGY4 which are MATa  ade2-1 can1-100  his3-11,15  leu2-3,112  trp1-1  ura3-1 and PJ69-4 which 

is MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal80∆. 
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Supplemental Table 2. Plasmids used in this study. 

Plasmid 
Name 

Gene  Epitope Tag Marker Promoter 2µ/ CEN Reference 

pBK38 CNC1 YFP URA3 ADH1 CEN [12] 

pKC337 CNC1 CNC1 TRP1 ADH1 CEN [13] 

pKC801 MED13 3HA URA3 TRP1 CEN [5] 

pLR166 CNC1S266A CNC1 TRP1 TRP1 CEN [14] 

pKC803 MED13 3HA LEU2 ADH1 CEN [5] 

pKC805 MED13571-650deg∆ 3HA URA3 ADH1 CEN This study 

pKC814 MED13742-844deg∆ 3HA URA3 ADH1 CEN This study 

pDS8 GAL4AD-MED13571-906 1HA LEU2 ADH1 2µ [5] 

pDS15 GAL4AD-MED13571-650 1HA LEU2 ADH1 2µ [5] 

pDS16 GAL4AD-MED13651-906 1HA LEU2 ADH1 2µ [5] 

pDS32 GAL4AD-MED13742-844 1HA LEU2 ADH1 2µ [5] 

pDS44 GAL4AD-MED13571-650 S636 1HA LEU2 ADH1 2µ This study 

pDS51 GAL4AD-MED13571-650 S636, S634A 1HA LEU2 ADH1 2µ This study 

pDS55 GAL4AD-MED13571-650 

S587A 

1HA LEU2 ADH1 2µ This study 

pDS56 GAL4AD-MED13571-650 

S58A7, S636A, S634A 

1HA LEU2 ADH1 2µ This study 

pDS45 NLS-Med131-306 1HA LEU2 ADH1 2µ This study 

pDS46 NLS-Med13306-570 1HA LEU2 ADH1 2µ This study 

pDS47 NLS-Med13907-1420 1HA LEU2 ADH1 2µ This study 

pDS52 NLS-Med13307-570 1HA LEU2 ADH1 2µ This study 

pDS54 GST-Med13571-650,S608A GST AMP - - This study 

pJG1215 HIS6-PSK1-KD HIS6 AMP - - [10] 

pUM504 CDK8 1HA TRP GPD CEN [15] 

pACT2 GAL4AD 1HA LEU2 ADH1 2µ [16] 

pAS2 GAL4BD 1HA TRP ADH1 2µ [16] 

pAS2-Grr1 GAL4BD-GRR1 1HA TRP ADH1 2µ [17] 

pAS2-
Grr1∆L∆F 

GAL4BD-GRR1Grr1∆L∆F 1HA TRP ADH1 2µ [17] 

pJG1465 GAL4AD-MED13504-703 1HA TRP ADH1 2µ [9] 

pAS2- 

Psk1 

GAL4BD-PSK1 

 

1HA TRP ADH1 2µ [9] 

JG1193 Snf1 8Myc URA3 Snf1 CEN [18] 

JG1338 Snf1K84R 8Myc URA3 Snf1 CEN [19] 

 Snf1 8Myc URA3 GAL1-10 2µ [19] 

 Snf1K84R 8Myc URA3 GAL1-10 2µ [19] 

pNLS-HA SV40 NLS 1HA LEU2 ADH1 2µ This study 

Mt-Cherry Mito-targeting mCherry TRP1 ADH1 CEN This study 

pRS314 - - TRP1 - CEN [20] 

pRS316 - - URA - CEN [20] 
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FIGURE S1: Phosphorylation of cyclin C is not required for degradation of Med13571-650.. (A) cnc1∆ cells (RSY1696) harboring 

degron571-650 (pDS15) and either wild-type cyclin C (pKC337) or a vector control (pRS314) were treated with 0.4 mM H2O2 for the 

timepoints indicated and Med13571-650-HA levels analyzed by Western blot. Tub1 levels were used as loading controls. (B) 

Degradation kinetics of the degron571-650 constructs shown in (A). Values represent averages ± SD from a total of at least two 

Western blots from independent experiments. (C) As in (A) except that cnc1∆ harboring either wild-type cyclin C (pKC337) or a 

phospho-mutant (cyclin C S266A, pLR166) was examined. (D) Degradation kinetics of results shown in (C). 

  



S.D. Willis et al. (2018) Supplemental Material Snf1 mediated degradation of Med13 

 

 

 

FIGURE S2: The PAS kinase can associate with Med13 but is not required for its H2O2 mediated degradation. (A) Y2H analysis of 

cells harboring the Med13 construct shown with either Grr1 or Psk1. PJ69-4 cells harboring the Med13-activating domain 

constructs shown and either pAS-Grr1 or pAS2-Psk1 which has previously been shown to interact with Med13505-703 [9]. The cells 

were grown on -LEU, -TRP drop out medium to select for both plasmids (left panel) or -TRP, -LEU, -HIS –ADE (right panel) to test for 

Med13-Grr1 interaction. (B) Wild-type (RSY10) and psk1∆ psk2∆ (JGY4) cells harboring Med13-HA (pKC801) were treated with 0.4 

mM H2O2 for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as loading controls. (C) 

Degradation kinetics of the results shown in (B). Values represent averages ± SD from a total of at least two Western blots from 

independent experiments. 
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FIGURE S3: (A) Cells with the genotypes shown harboring Med13-HA (pKC801) were treated with 0.4 mM H2O2 for the timepoints 

indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as loading controls. (B) Wild-type (RSY10) cells 

harboring either degron571-650 (pDS15) or with the mutations shown were treated with 0.4 mM H2O2 for the timepoints indicated 

and analyzed by Western blot. Tub1 levels were used as loading controls. (C) Control experiment for the co-immunoprecipitation 

analysis shown in Fig. 5D showing that cells harboring a vector control are unable to pull down Snf1-myc whereas Cdk8-HA can. 

  



S.D. Willis et al. (2018) Supplemental Material Snf1 mediated degradation of Med13 

 

 

FIGURE S4. Upper panel: cyclin C is released from the nucleus following H2O2 stress in med13∆ cells harboring Med13571-650deg∆-HA 

(pKC805) as the only source of Med13. Fluorescence microscopy of mid-log phase med13∆ harboring pKC805 and cyclin C-YFP 

(pBK38) were analyzed as shown before and after 0.4 mM H2O2 stress. Cells were stained with Dapi to visualize the nucleus. Lower 

Panel: as in upper panel except that the mitochondrial marker mCherry was also expressed. Bar  = 13 µM. 
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