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ABSTRACTEndospore formation has been a rich field of research for mo
than a century, and has benefited from the powerful genetic tools aaaile in

Bacillus subtilis In this review, we higlight foundational discoveries that
shaped the sporulation field, from its origins to the present day, tracing
chronology that spans more than onbundred eighty years. We detail how
cellspecific gene epression has been harnessed to investigate thest&nce

and function of intercellular proteinaceous channels in sporulating cells, al
we illustrate the rapid progress in our understanding of the cell biology !
sporulation in recent years using the prose of chromosome translocation as
a storyline. Fnally, we sketch general aspects of sporulation that remal
largely unexplored, and that we envision will be fruitful areas of future re
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INTRODUCTION

Since their disavery, bacterial endospores (a.k.a. spores)
have attracted the attention of the scientific community
and, at times, even the general public. This should not
come as a surprise, as some properties of endospores
could well be in the headlines of the popularess. Bacte-
rial endospores are among the most resilient tefles
known, and can survive for very long periods of time with-
out any nutrients. In fact, it has been claimed that viable
endospores were isolated from the gut of extinct bees bur-
ied in Dominian amber more than 25 million years a4,
evoking the imagery of Jurassic Pk Furthermore, the
use ofBacillus anthraciganthrax) spores in biological war-
fare and, more recently, in bioterrorist attacks has brought
the bacterial spore to the attention of modern socid8].
The study of endospore formation, however, is full of fas-
cinating discoveries that, while subtle enough to escape
the attention of the mainstream media, have contributed
to shape our current perception of bacterial cells. This re-
view aims to discuss some of the key findings that have
shaped the sporulation field, through the lens of bacterial
genetics.
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SASR small acidsoluble protein
Sp6 ¢ asporogenous and
oligosporogenous mutds,

Spd - sporulating strains,

SRS SpolllE Regnition Sequence,
TCA tricarboxylic acid,

TZMc 2,3,5triphenyltetrazolium
chloride

A BRIEF HISTORY OF ENDOSPORE FORMATION
Arguably the most important mileste in endospore re-
search was the actual discovery of endospores. The first
reported observation of bacterial endospores dates back to
1838, when Christian Gottfried Ehrenberg noted refractile
bodies inside bacterial cell4]. It was not until nearly four
decades later that enakpores started to be characterized
in seminal studies by Ferdinand Cohn and Robert Koch.
Cohn initiated the study of the resistance properties of
spores with the observation theB. subtilisspores survive
periods of boiling[5]. Koch, in collaboration with Cohn,
followed the spoulation-germination cycle irB. anthracis
[6], and realized that spores and vegetative cells are differ-
ent cellular forms of the same bacterial species, and that
cells can interconvert beteen these two forms, from veg-
etative cells to spores via sporulation, and from spores to
vegetative cells vigermination. Their handirawn sketch-
es of these processes ashown inFig. 1

At the same time, John Tyndall independently postu-
lated the existace of latent bacterial forms able to survive
extreme temperatures. He described a sterilization tech-
YAldzS oy2¢ RSaA3ayl 4GSR
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FIGURE 1: Early depictions of sporulation a
germination inBacillus sppln one of his most
well-known studies [6], Robert Koch investi
gated the etiology of anthrax(A) Koch fol-
lowed the sporulation process iB. anthracis

He placed a slice of spleen containing Begil-

lusinto cow sera o aqueous humor, and incu
bated the specimens at 357°C in an incubatol
that he himself had constructed. During th
incubation, he observed the cells growing in
stringlike structures. After 145 h, these
strings contained light refracting bodies, whic
he identified as spores. Koch depicted ti
structures in this sketch and likened them 1
fragile strings of pearls. The strings gradue
decomposed, the spores were released and sank to the bottom of the droplet where they accumulated and could be Wepk$.(B)

Koch followed spore germination and outgrowth, and determined that spores can form viable cells. He fixed dried sporkdeoanal :
incubated the sample with aqueous humor. Afted Jours, he observed various stages of germination androwtty, which are depicted
AY [ 2KyQa &1S00K® VY 2shaifed Brfciutes|ntlGsed by d f8irN&/ér of Ipratopasinghat he called bright matte
hypothesized that during outgrowth this bright matter stretched and became the vegetatililendeereas the spore remained at one c¢
pole, lightened, and shrank, before it dissociated and disappeared. He proposed that the spore core consists of anasiequixstssary

for the cell to resume vegetative growth.

spores from culture media through the application of in-
termittent heating periods that kill vegetate cells, inter-
spersed with periods of no heat that permit the spores that
survive to germinate into vegetative cells, which are then
killed during subsequent heating periofig.

Throughout the next few decade researchers at-
tempted to characterize the process of endospore for-
mation in different bacterial species, but it was difficult for
them to achieve a unified understanding due to the limita-
tions of the optical microscopy and staining methods avail-
able atthat time [8, 9] Some researchers, led by Koch,
thought that spores were formed through the growth of a
single refractile granule inside the cytoplasm of the veget
tive cell[6]. A related model postulated that spores were
not the result of the growth of a single granule, but of the
fusion of multiple sporogenic granules inside the vegeta-
tive cell [10]. These putative sporogenic granules were
probably cytoplasmic inclusion bodies that are present in
various species of endospore forming bacteria, and are
unrelated to spore formation. A different model, which
comports better with our current perception of endospore
formation (see below), proposed thapores were formed
through the condensation of part of the vegetative cell
protoplasm, which gained refractility over timg1]. A
shared feature of these models, however, was that spore
formation happened close to a single cell pole.

The advent of electron microscopy allowed for a more
comprehensive cytological model for sporulation to be
RS@PSt 2SR Ly GKS 138
FitzJames provided detailed cytological descriptions of
endospore formation irBacillus cereu§l2, 13] Electron
microscopy studies on sporulation in oth&acillusand
Clostridiumspecies were published shortly thereaft§t4g
16 . & GKS YAR cnQaxz
view of the cytological transformations leading to endo-
spore formation, which are highly conserved among differ-
ent species.
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In 1965, Antoinette Ryter defined six different stages of
sporulation [17], based on her own studies &. subtilis
and on those of Young and Fitames irB. cereusand this
classification was later expanded to eight sta§®s, 19]

An upto-date description of the different stages B sub-
tilis, including details derived from flusseence microsco-
py and genetic studies, is shownHig. 2 It is important to
note that this classificatiomepresents discrete cytological
steps of a process that is actually continuous. Thus, not
only do several steps occur concomitantly, but also detail
about the transition between different stages are often
neglected. For example, the transition between stages Il
and Il happens through a phagocytelie process called
engulfment, in which the membrane of the mother cell
migrates around the foresporgenerating the cell within a
cell that is a hallmark of endospofermation (Fig. 3; the
synthesis of the different spore layers is also gradual and
starts shortly after polar septatior{g. 3 [20]. Neverthe-
less, the classification proposed by Ryter represents a con-
ceptual frameworkthat facilitated the subsequent genetic
dissetion of spore formation.

B. SUBTILISAND THE GENETIC ANALYSIS OF
SPORULATION MUTANTS

During the first half of the20" century, sporulation was
studied simultaneously in different bacterial specigsvo
major discoveries, however, position&l subtiligo be the

ideal model system for characterizing the process of sporu-

M p Na@ch during the sedomiith@f ofahe Gedtdry: in 2088/J8hn | Y R

Spizizen reported thaB. subtiliscan be transformed with
DNA[21]; shortly thereafter, Thorne and Takahashi inde-
pendently isolated phages capable of mediating general-
ized transduction in the same organisfp2¢25]. These

G KS T A pofvdrful oblSdpehe® Kelv&/ehGds folgendd sfudidsy a dza

and several laboratories turned their attention B subtilis
to perform thorough genetic analyses of sporulation.
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Vegetative cell. Chromosome (blue string), membrane (red) and peptidoglycan

Stage 0
g cell wall (gray) are shown.
The DNA replicates and the two resulting chromosomes form an axial filament
Stage | that spans the long axis of the cell. The division sites (dotted ovals) shift to polar
positions.
Only one of the division sites forms a septum, generating a larger mother cell
Stage Il and a smaller forespore. The polar septum traps the forespore chromosome,

which is transported to the forespore by the SpolllE DNA translocase (green
circle; white arrow indicates translocation direction).

around the forespore at this stage.

The membrane of the mother cell migrates around the forespore, in a
Engulfment phagocytosis-like process. A proteinaceous coat (black) starts assembling

After engulfment, the forespore is enclosed within the mother-cell cytoplasm,
delimited by two membranes: an inner membrane that is the original forespore
membrane, and an outer membrane derived from the mother cell engulfing
membrane.

Stage Il

A cortex made of peptidoglycan (light gray) is synthesized between the inner
and the outer forespore membranes. Small acid-soluble proteins (SASPs,
green dots) start binding to the chromosome.

Coat assembly (black) completes at this stage. The forespore chromosome is
compacted and saturated with SASPs (green dots).

A molecule called dipicolinic acid (DPA) synthesized in the mother cell is loaded
into the foresprore. The forespore core is partially dehydrated and the spore
becomes heat-resistant.

Coat oy The mother cell lyses and the spore is released into the environment, where it

Cortex remains dormant until conditions are appropriate for germination. Different

Stage Vi @IM structural features of the spore are indicated: OM, outer membrane; IM, inner
ore membrane.

FIGURE 2: Sporulation stagesBinsubtilis
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Mutants unable to form endospores (asporogenowus),
with significantly reduced ability to form spores (oligospo-
rogenous) have been reported for different species of en-
dosporeforming bacteria ever since the inception of
sporulation research26]. The defining characteristic of
oligosporogenous mutants is that the spores produced by
them yield vegetative cells with equally low ability to pro-
duce spores. In contrast, asporogenaustants, by defini-
tion, do not form viable spores, unless they accumulate
secondary mutations that suppress the asporogenous phe-
notype. Such spores yield vegetative cells with significantly
increased ability to form new spores compared to the
asporogenougarental strain. For simplicity, we will refer
to both asporogenous and oligosporogenous mutants as
Spo, and strains able to sporulate efficiently will be re-
ferred to as Spb

Researchers quickly devised simple, forward genetic
screens to isolate Spamutants in large numbers, and
mapped the mutations using classical genetic methods
such as transformation and transductidd7, 28] Those
studieswere facilitated by the development of simple tests
to distinguish Spoand Spo strains. Spo mutants form
white colonies in certain rich media, whereas strains able
to sporulate efficiently form brown colonies. The brown
color is due to the accumulatioof a pigment whose syn-
thesis requires a component of the spore coat, Cf#8,

30]. Secondly, the heat resistance of the spores provides a
definitive test to distinguish Spoand Spo strains [31].
Determining the linkagbetween mutations conferring the
Spo phenotype and different markers in the chromosome
led to the understanding that there ammultiple sporula-
tion (spo loci, scattered around the chromosonf27, 28,
32¢34].

The initial analysis of Spmutants indicated that spor-
ulation was blocked at different stages in different Spo
mutants [31], suggesting that each sporulation stage was
controlled by a dedicated set of genes. This was formally
confirmed in 1966, when Ryter and collaborators per-
formed a cytological characterization 8f subtilisstrains
carrying differentspomutations using electron microscopy,
and classified them according to the stage at which sporu-
lation was blocked18]. This study led to the establishment
of a specific nomenclature for thepolocithat was formal-

Vegetative cell
Spore

Germlnatlon
QEF)

porulatlon
spo

Coat protelns SASPs
(cof) (ssp)

Outgrowth
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ized in a classic revielw Hggot and Coote in 197R.9].
The spo loci were defined as thes that when mutated,
impaired the ability of the cell to form spores, without hav-
ing a noticeable effect on vegetative growth. The loci were
classified into different categoriesgoQ spoll spoll| spolV,
and so on), according to the stage at which spation was
blocked in themutants fig. 3. No distinction was made
between stages 0 and I, and mutations that caused block-
age in either stage were globally referred to ss0Q A
capital letter was used to distinguish different loci, muta-
tions in which poduced blockages at the same stage. Thus,
for example,spolllAand spolllErefer to two distinct loci
that, when mutated, produce a blockage at stage Ill. In
some cases, it was later discovered that a specific locus
was actually an operon containing se&l genes. In those
cases, the different genes of the operon were assigned a
second capital letter (for example, ttepolllAlocus actual-
ly consists of an operon of at least eight genes, which are
named in order from golllAAto spolllAH.

In addition tothe spo genes, three more developmen-
tal gene categories were describegkr, cotandssp(Fig. 3.
Many ger genes were identified in elegant genetic screens
for mutations that rendered spores unable to germinate
properly [35¢40]. These screens relied on an agar plate
assay in which colonies formed by mutagenizetk were
treated with heat or chloroform vapor to kill vegetative
cells[35]. The remaining spores were then overlaid with
agar containing two key conopents: (i) nutrients to in-
duce germination, and (ii) 2,3f8iphenyltetrazolium chlo-
ride (TZM), which turns red when reduced by metabolical-
ly-active cells. Spores are metabolically dormant, and are
unable to reduce TZM to produce the red pigment, but
upon germination become metabolically active and can
reduce TZM to give the colonies a pink coloration. Colonies
containing germinatiordeficient spores fail to reduce TZM,
and therefore, do not produce the red pigment. While
some of theger genes identified i gemination screens
encode proteins involved exclusively in germination (for
example, the genes encoding germinant receptors, such as
those in thegerA and gerB operons), others encode pro-
teins that are actually required for proper spore develop-
ment, gererating some overlap betweegerandspogenes
(for instance,gerM is required for proper sporulation, but

FIGURE 3: Developmental lociBnsubtilis. Diagram of the
sporulationrgermination cycle, with the different classes
developmental loci noted (in parentheses). T8moloci are

required for spore formation, but not for vegetative growtt
The ger loci are required for proper spore gemaition.

After germination, metabolism is reactivated and the spc
transforms into a growing vegetative cell in a process ca
outgrowth, which is thought to depend on the same pat
ways that control vegetative growth. Theot and ssploci

were identified after the isolation and characterization ¢
coat and small acidoluble proteins (SASPS), respective
from spores. In addition to the these categories, there &
hundreds of developmentalsegulated genes whose role
in sporulation and germination areot yet understood.
Membranes, red; DNA, blue; cell wall, gray; spore cor
light gray; spore coat, black; SASPs, green circles.

Microbial CeDANUARY 202¥ol. 8 No. 1
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it was first identified in a screen for germination mutants
[41, 42).

The two major remaining categories of developmental
genes,cot (for coat) andssp (for sporespecific protein),
were identified by reverse genetics, after the isolation and
biochemical characterization of coat proteins and small
acid-soluble proteins (SASPE)9, 4347] from spores, re-
spectively Fig. 3. SASPs are abundant spore proteins that
saturate and progct the spore chromosomg45]. Since
individual SASPs and most coat proteins are dispensable
for B. subtilissporulation under standard laboratory condi-
tions [29, 46, 48, 49]they were missed in the genetic
screens that led to the identification spogenes.

The discovery and characterization of developmental
genesaccelerated after the rise of DNA cloning and se-
guencing technology. Researchers were able to clgpe
genes by selecting for chromosomal DNA fragments that
complemented the respectivepo mutations. From these
clones,lacZfusions were generated, and these in turn al-
lowed for the study of thespogenesin viva New genetic
tools, such as Wi7-basedtransposition mutagenesib0g
52] and integrational plasmid vectof52¢55], further facil-
itated the identification and mapulation of spoloci. Dur-
Ay3a GKS f1F3GS mdTtnQa
cloned and sequenced, their expression characterized, and
the role of the proteins they encode started to be deci-
phered.

CEUSPECIFIC GENE EXPRESSION

Three main conclusits aose from the initial genetic anal-
ysis of sporulation: firstnostdevelopmentalgenes are not
expressed in growing cells, and their expression is induced
at different times during sporulation; second, there is a
dependency hierarchy in developmentadrge expression,
such that the expression of genes that participate in later
events in the sporulation pathway tends to depend on the
expression of genes that participate in earlier events; third,
the majority of the sporulation genes are expressed in only
one of the two cells required to form a spore, either the
mother cell or the forespore. This last conclusion was
achieved by using fractionation techniques to separate
forespore and mothecell protoplasmg56¢58], and by the
implementation of genetic strategies to determine the cell
in which differentspogenes were requirefb9, 60] In one
such genetic strategy, developed by Lencastre andd®ig
[59] and illustrated inFig. 4 Spo mutants wee trans-
formed with genomic DNA from the wilype (Spd) strain

at the start of sporulation, thereby rendering the Spou-
tants capable of forming heaksistant spores. The paren-
tal Spo mutants fell into two categories, depending on the
ability of the resultant spores to produce additional spores
following germination: mutants in the first category pro-
duced spores that were homogeneously Spmutants in
the second category produced a heterogeneous population
of Spo and Spospores. Thespogenes mutatedn the first
category of parental strains were inferred to be required in
the forespore, and the ones mutated in the second were
inferred to be required in the mother cell. The logic under-
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lying this interpretation is as follows-ig. 4: of the two
cellsrequired to form a spore, only the forespore retains
its chromosome in the mature spore, since the mother cell
lyses upon sporulation cgptetion ig. 3. Thus,spogenes
required in the forespore must be complemented in the
forespore chromosome and the Mitype version of the
gene will therefore always present in mature spores, and
these will give rise to a homogenous population of ‘Spo
transformant spores. But if apo gene is required in the
mother cell and not in the forespore, then sporulating cells
in which only the mothercell chromosome is transformed
with the wild-type allele will be able to form mature spores,
but the nontransformed forespore chromosome would
still contain the mutated version of thepogene, and the
spores would remain Spo

Resllts from these biochemical and genetic analyses
underscored that different genetic programs were activat-
ed in the two cells, at different times during sporulation.
From here, the focus moved on to deciphering the genetic
regulation of sporulation.

In 1969 it was discovered that bacteri&®NA polymer-
FaSa O2ydlAy | FILOG2NE OFff SR
promoter recognition and transcription initiatiof61, 62].

I lo€iRverg n Q THis findling/1éd reBeGreghSr 1B hyiYothssizd tiie existence of

FfOGSNYIGAGS FILOG2NAEY 6KAOK (
to specific subsets of promoters. The existence of such
FEGSNYIFGABS FI O0 2 NR. subtlliss  F A NJ
phage SP0I63]x ¢ KA OK Sy 0O2RS4& Fl OG:
pression from middle and late phage promoters. The first
oF OGSNRLFE I GSNBAIAORDS NBAT 160 B2 N
agenerald 0 NB & a Nabtér biB.subtisinitially, the
name of theRA F F SNB y FIOG2NBR o6 a o
f I NJ ¢SA3IKI( Zwag/~37kbd, a detekndagdby
the apparent size of the purified protein in an acrylamide
gel. Howevex (G KS RAA02@0SNE 2F It dSN
similar sizes or that migrateaberrantly in acrylamide gels
accelerated over the following years, which led researchers
in the B. subtilisfield to replace the molecular weight des-
ignation with a letter refleting order of discovery65, 66]
¢CKdzZ Bl & NI BIthe Qidtne by which it is com-
Yyte (yz2e¢y (2RIF&X yR (GKS 3Sy
were namedsigfollowed by their corresponding letter.

Shortly after theR A & O 2 F5SiN@assko®n that the
sporulation regulatory program&l2 NBf ASa 2y |
factors that are activated in the mother cell or in the fore-
spore at different developmental stages. The first sporula-
tion-4 LISOATA O FI O 2 NF (driginally S
NB F S NNBR[67{bX wds discovered using predomi-
nantly biochemical and molecular biology techniq(iés].
The protein was isolated from RNA polymerase purified
from sporulating cultures, and was shown to change the
promoter specificity of RNA polymerage vitro. Not sur-
LINARaAy3Ites Al o1 a Bwdmead®dedzSy Gt &
by a previously identifiedpolocus,spollGRlater renamed
assigg [68, 69 ! FL SHUKNBS I RRAGAZ2Y
factors were dentified by means of both sequence similari-
G GAGK LINSGA2dzat & inAviRStsarir A FA SR
AONRLIIAZ2Y | aalea "G 718 OFaHz | G A 2

RA &
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Spo™ strain
Spo*™ DNA

’,
e b

‘
/

spo gene required in forespore (FS) spo gene required in mother cell (MC)

FS chromosome MC chromosome Both chromosomes FS chromosome MC chromosome Both chromosomes

transformed transformed transformed transformed transformed transformed
() ( ()
v, " v,
» O O

@ ®-
@©-¢ @D
@-(W @)+

®-(M @)~

-
D-E@-E3

(9]
il
o
%

Spo* Spo* Spo-

All viable spores are Spo* Viable spores are Spo~ or Spo*

FIGURE 4: Genetic strategy to identify the cell in whicépagene is requiredA Spé strain with a mutation in a knowaspogene (yellow
star) is depicted in Stage | (sEBg. 3 with its two chromosomes, one that will be packed into thesfpore (upper chromosome) and or
that will remain in the mother cell and be destroyed when the mother cell lyses (lower chromosome). Thesstraisformed with ge-
nomic DNA from a Spatrain at the onset of sporulation. Transformed chromosomes argvdria purple, nortransformed chromosomes
in blue. Either or both chromosomes are capable of being transformespth If the spogene is required in the foresporéeft panel),
transformation of the forespore chromosome $pa rescues the process an@igerates spores that can germinate and go on to sporul
again (left). But transformation of the motheell chromosome t@pad with no accompanying transformation of the forespore chromosol
leaves the forespore chromosonmepd so the cells cannot compte the process, and no spores are produced (center). Hence only
spores are generated if thepogene is required in the forespore. If tispogene is required in the mother cetight pane)), transformation
of the mothercell chromosome tepad rescles the process (center and right), but only if the forespore chromosome is transformed a
will the spores that are produced be able to germinate into cells that can go on to sporulate again (right).deém&po and Sps spores
can be generated the spogene is required in the mother cell.

7411 y E[75]. InB. subtilis the activation of the different
AL NYzE F GA2Y
RAFFSNBy FIL OG2N&R | NB
cellular compartments, and the activation of a later factor
depends on the activation of the previswone Fig. 9: first,

After the discovery of the sporulatiet LIS OA T A O

allowed researchers to diseer additional genes under the

TIOG2NE T2 2many of thkdeRipmbiiakgands: drevidusyRidentied v

Tl

g K

ASdSNBALBRAIYORA AI2I RA TAYS NIBy i S NWSI-:
factor controlling their expression. Microarray technology

*Fbecomes active in the forespore shortly after polar sep-
GFdA2ys T the2ndtBeR celd Roughly coinci-
RSyl ¢AGK Sy3dz ¥ acgivatedOr? thiel It
FT2NBaL2 NG Kig &bvateH Anythe trrfotBek cell.
The variety of mechanisms involved in the sequential acti-
Grirz2y 2F GKS&S Tl Ol 2 N&
lytic processing, and even a gene splicing eye6¢79].
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O2y (NPt
&LISOATAO

27T

a LIBO|B Fogekheryhe cell T+ O 2
He lexXpriésaidhEof ntde yhanNeROE

Sdiffarent/gEnes82, 83] the majority of which are not ex-

pressed during vegetative growth. Ovidre course of the
past few decades, the study of sporulation has focused on

Adgciphiedrg Sé funttiin2of delie® NS drd uhdesthe M G S 2

TEOG2NA® . o

trol of sporulatiord LIS OA FA O
nearly 1/3 of these genes remain a mystery, and for the
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Early sporulation phase
(after polar septation)

ENTTY

Late sporulation phase
(after engulfment)

FIGURE 5: Cascade of sporulatgpecific’ ¥ | O B.20bHlis
LYYSRALFGSt @ I F(SsNiktivdred ih tNd fareSpoié
*F activation triggers an intercompartmental signaling casce
GKFG tSIRa (2 EARSOIKDIXBE &S =)
Iy FE control gene expressioduring engulfment. Roughly coir
OARSYl oAlGK GKS O2YiLE SHNB RKCInE
0KS FT2NBaLRNB:Z 6KAOK f SI R&Xini
G KS Y2 RISWHKDB6 Hete expression in the forespol
and the mother cell, resptively, after engulfment.

majority of sporulation genes with assigned function, we
have only a superficial knowledge of how specific gene
products contribute to spore formation. We envision that
the study of developmentallyegulated genes will continue
to be a fruitful area of researdor years to come.

Milestones inB. subtilissporulation

tion systems from Gramegative bacterig103, 10&108],
and one of them, SpolllAG, has been shown to form mul-
timeric ringsin vitro [109, 110] leading to the proposal
that A-Q compexes constitute proteinaceous channels that
connect the mother cell and the forespore, through which
Y2f SOdz §$a NAdjvagbrNdight b& ®aNsferred
between the two cells. Meisner and collaborators devel-
oped a compartmentalized biotinylation &gsto test this
idea Fig. 6A [111]. The authors used mother ceknd
foresporespecific promoters to express the gene encoding
E. colibiotin ligase KirA) in either cell, and fused biotin
acceptor peptides to the extracelld domains of A and Q
proteins. They found that BirA produced in the forespore
could biotinylate the extracellular domain of SpolllAH,
which supported the idea that-@ complexes are channels
that are open at least on the forespore side.

In a separate stug Camp and Losick took advantage of
celkspecific gene expression to study whetheiQAchan-
ySta ¢SNB aLlS O Faatigatioh, foRif tHeg |j dzA NEX
Ff&a2 LIXFeSR | NRf $independenk S S E |
genes Fig. 6B [112]. They monitored the activity of the
heterologous RNA polymerase, T7 RNAP, when produced
in the forea LJ2 NB  %d¢fendent promoter by placing
a lacZ gene under the control of a T7 RNAEpendent
promoter. In the presence of-®,i -galactosidase activity
could be detected at the onset of sporulation, and it in-
creased gradually over time until it reaagh a plateau that
was maintained throughout spore formation. In mutants

CELISPECIFIC GENE EXPRESSION AS A GENETIC TOdacking functional AQ complexes| -galactosidase activity

Beyond its central importance to the developmental pro-
gram of sporulation, celpecific gene expression has come
to provide a powerful genetic tool for the study of different
aspects of pore formation. After the discovery of the
sporulationd LISOA A O FI Oli2NEZ
OKF N} OGSNAT SR LINRBY2{SNA
tors (i.e. [84¢92]), enabling these promoters to be <o
opted for expression of heterologous genes in either the
mother cell or the forespore, at diffent developmental
stages. Celpecific gene expression has been used to
study many of the fundamental features of spore for-
mation such as the temporal compartmentalization of the
RAFTFSNBY
chromosomes after sporulation initiatioi94], and the
transport of the forespore chromosome from the mother
cell to the forespord95¢101], among other thingsin or-
der to illustratethe power of this approach, we describe
three experiments that have helped to disentangle, at least
partially, the function of the sporulation logpolllAand
spollQ(Fig. §:

Mother-cell proteins encoded in thespolllA operon
(which contains eight genespollAAto spolllAH together
with the forespore protein SpollQ form a trapavelope
multimeric complex (henceforth - complexes) that
spans the mothecell and forespore membrane&ify. 6A
[102, 103] Mutants lackingspolllAor spollQare asporoge-
y2dzaz Fa GKSe& FrAt G2
[104, 105] Some of the SpolllA proteins show sequence
and structural homology to components of various secre-
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was also detected at the onset of sporulation, but dropped

2FF fFGSNI AY &L NHzZ | dQvdyid | G N
be nomally activated. These observations indicated that A

Q plays a general role in regulating forespore gene expres-

v 3R Ynghab r NDK 8 N LIBNIRE F A g § a3
NJ 3 astivityiseerificagys The auorsipfoposed fhgpchan-  F | -

nels constitute a feeding tubthrough which the mother
cell provides metabolic resources to the forespore in order
to maintain forespore biosynthetic activities at late sporu-
lation stageg112].

We have recently accumulated morgidence that the
mother cell nurtures the foresporéy implementing a cell

a LJ2[98Hzhe ofigAnzafion of tHE | O §P£qifig protein degradation system that also relies on-cell

specific gene expressiorri§. 6Cand D) [113, 114]. The
system uses modified ssrA* tagsiin E. colfused to the €
terminus of target proteing114], and the cognateE. coli
SspB adaptor protein produced under the control of moth-
er-cell or foresporespedfic promoters[113] (note that E.
coli SspB is not related to the sporulati@sp genes de-
scribed previously in this manuscript; to avoid confusien,
coli SspB will be referretb as SspB). When SspBis pro-
duced, it binds to ssrA* and delivers the target protein to
the endogenous. subtilisprotease ClpXP for degradation
(Fig. 6Cand D) [114]. We are using this platform to sys-
tematically assess the requirement of different metabolic
pathways in the mother cell and in the forespore for sporu-

I Ot A ¢ latiprsto greggessenprmady. Qus fegilts ingisase that the | O 2

tricarboxyic acid (TCA) cycle is rerpd in the mother cell,
but is largely dispensable in the forespofeg. 68 [115].
We have also observed that protein synthesis in the fore-
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spore requires TCA cycle activity in the mother cell, sug- precursors are transported to the forespore to support

gesting that the mother cell produces TCA cydézived protein synthesis, in line ith the feeding tube model pro-
metabolic precursors, such as amino acids, for protein syn- posed by Camp and Los[d4d 2].

thesis in both the mother cell and the foresporeid. 6 Overall, celspecific gene expression has been a fantas-
[115]. These findings indicate that motheell metabolic tic addition to the list of gentic tools available iB. subtilis

p-gal B-gal
00O O
--------- % | o8 S
--------- S @
Metabolic resources Metabolic resources
Sustained high f-gal Low B-gal activity during
activity late sporulation
SSpBEC Prqrteins
in MC
ClpXP
Ec
SSDB&
in FS
Intact TCA TCAcycle
cycle in MC blocked in MC

FIGURE 6: Harnessing esgbecific gene expression tdugly the function of AQ complexes. (AThe forespore proteirspollQ (Q, orange
circle) and the mothecell proteins encoded in thepolllAoperon (A, light blue circle), form tramvelope complexes that bridge the fore
spore and mothercell membranes dumg engulfment. Zoomed in panel: Biotin ligase (BirA, green) produced in the doeeispable to bio-
tinylate a biotin acceptor peptide (pink) fused to the extracellular domain of the A protein, SpfilllAlindicating that AQ complexes are
channels (see panel B), and that the channel pore is open orotesfore side and large enough for BirA to reach the extracellular dor
of SpolllAH(B) The activity of a heterologous RNA polymerase (T7 RNAP, yellow) produced ireipofe uik S Rdontrol is monitored
by the accumulation of -galactosidasel ¢gal dark blue circles) produced through the expression tF#cZgene under the control of a T’
RNARdependent promoter. In the presence of@ channels (A, left zoomed in panel), stainedi -galactosidase activity is detecte
throughout sporulation. Intie absence of & channels (&Y, right zoomed in panel),-galactosidase activity drops at later sporulatic
stages. Camp and Losidk 2] proposed that AQ channels constitute feeding tubes throughieh the mother cell transfers metabolic re
sources to the forespore to maintain biosynthetic activities at late sporulation st§G¢3he ssrA*/SspBinducible protein degradation
system[114]. SspB°(purple) binds to ssrA* (red) fused to thet@minus of target proteins (green), and delivers the target proteins to
endogenousB. subtiligprotease ClpXP (orange pacman) for degrada(ibhCeltspecific degradtion of target proteins during sporulation i
achieved by expressirggpBcfrom mother cel or foresporespecific promoterg113]. Target proteins neresented by green ovals tagge
with ssrA (red line); degradation represented by orange pacr(@ieft cell:Mother-cell TCA cycle provides metabolic precursors, suc
amino acidgAAs, yellow circles), to support protein synthesis in both the motkéramd the foresporg115]. Mother-cell metabolic pre-
cursors could be transported to the forespore vid@Achannels, in keeping with the feeding tube modright cell: Degradation of TCA cy:
enzymes in the mother cell blocks protein synthesis in bbéhrhother cell and the forespoif@15].
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We are looking forward to seeing new creative approaches
using those tools to explore thaner working of sporulat-
ing bacteria.

THE GENETIC BASIS OF CELLULAR DYNAMICS

The study of sporulation has helped to overturrettradi-
tional dogma that bacterial cells lack a defined internal
organization owing to the absence of membraoeund
organelles Over the las5 years we have obtained pre-
cise descriptions of how proteins are redistributed during
sporulation to mediate gnamic cellular processes. Ad-
vances in our understanding of sporulation during this pe-
riod have been driven by the developmeot a wealth of
new imaging technologies, particularly in fluorescence mi-
croscopy, which have allowed the field of bacterial cell
biology to emergeWe illustrate the rapid progress made
in this field by focusing on a single protein, SpolllE.

Since the mid20" century, it was recognized that the
two chromosomes resulting from a replication event prior
to sporulation initiation are egregated during sporulation,
such that one remains in the mother cell and the other is
packed into the small forespoi@2]. In 1994, Wu and Err-
ington [116] reported that mutations inspolllE one ofthe
spoloci that was identified during the genetic analysis of
sporulation mutants prevented complete segregation of
the forespore chromosome, such that only ~30% of the
chromosome was present in the forespore with the rest
still in the mother cellKig 7A). They inferred that the po-
lar septum trapped the forespore chromosome, and that
SpolllE mediated the translocation of thehromosome
across the septum into the forespore.

Further studies showed that SpolllE is a membrane
anchored FtsHike protein hat has a large @rminal cy-
toplasmic motor domain[117] with DNAdependent
ATPase actiyi, that is capable of tracking along DNA in the
presence of ATPL18]. More recently,in vitro studies with
purified SpolllE motor domains have shown that tteesy
semble into hexameric ringd 19, 120], with an inner di-
ameter large enough to accommodate a doubteanded
DNA molecule[119]. Single molecule experiments using
optical tweezers have aleed the characterization of the
inter-subunit coordinatior{121] and of the mechanochem-
istry [122] of the hexameric rings as they move along DNA
molecules, providing exquisite details of the mechanism of
chromosome translocation at the molecular level.

SpolllE assembles into a translocation complex at the
septd midpoint during the early stages of sporulatidfig.
7B). This was shown first in fixed cells using immunofluo-
rescence microscopfll?7] and later in living cells with a
SpollIEGFP fusion and fluorescent memabe dyes that
are compatible with live cell imagirig23] (Fig. 7B. More
recently, studies of the assembly of the SpolllE transloca-
tion complex with superesolution optical microscopy
techniques[101, 12, 125] have revealed that SpolllE oli-
gomers localize to the leading edge of the padaptum as
it forms, and ultimately assemble a stable translocation
complex at the septal midpoint. In mutants that produce
thicker than normal polar septa, supegsolution micros-
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copy has made it possible to resolve two different foci
within the SpolllE amplex Eig. 7Q, suggesting that the
complex consists of two subcomplexes of opposite polarity,
one anchored to the mother cell and the other to the fore-
spore septal membrane. Each subcomplex contains enough
SpolllE monomers to assemble at least two hes@dorings
[101], which would allow the two arms of the chromase

to be translocated in parallel from the mother cell to the
forespore Fig. 7D [98].

Assembly of the SpolllE translocation complex requires
that the DNA be trapped at the septufd26], and the
complex is in turn required to mediate septal membrane
fission while the chromosome is translocat§?4]. This
has led to the proposal that the motheell and forespore
SpolllE subcomplexes pair to form a continuous channel
spanning both septal membraneFig. 7D. In supportof
this idea, it has been shown that both forespore and
mother-cell subcomplexes are required to keep the septal
membranes separated during chromosome translocation
[101]. However, the mothecell subcomplex by itself is
sufficient to mediate the transport of the chromosome into
the forespore[95, 101] If the SpolllE motherell subcom-
plex is absent, the forespore subcomplex can transport the
chromosome oubf the forespore and into the mother cell
[95, 101] indicating thatthe SpolllE translocation complex
can, in principle, function as a bidirectional motor. During
sporulation, however, the SpolllE translocation complex
always transports the chromosome from the mother cell to
the forespore Fig. 7D. The mechasim that detemines
translocation directionality has been at least partially elu-
cidated by means of a combination iof vivg in vitro and
in silicoapproaches. The motor domain of SpolllE is able to
recognize specific, highkewed octameric sequences in
the DNA ca#ld SpolllE Recognition Sequences (SRSs),
which are present in each arm of the chromosome but on
opposite strandg497]. Since theB. subtilischromosome is
circular and the two chromosome arms are trapped at the
septum, the opposite orientation of SRSs on each arm
might serve as a cue tcetermine translocation direction-
ality. In fact, it has been shown that the interaction of
SpolllE with the SRS in the orientation preferentially en-
countered by SpolllE as each chromosome arm is directed
into the forespore stimulates SpolllE ATPase actji2{,

127, 128]. This might account for the direction of translo-
cation and the simultaneous traneg of both chromo-
some arms to the forespore.

In addition to guaranteeing that the forespore receives
a full complement of genetic material, Spolttiediated
chromosome translocation also contributes to the genera-
tion and maintenance of forespore shape ohg engulf-
ment [100]. Packaging an entire chromosome intioe
small forespore compartment leads to a high turgor pres-
sure, which inflates the forespore like a balloon and dis-
tends the forespore membrane§ig. 75

While spolllEs among the best characterizegpo loci,
the field has made significant progresstlire understand-
ing of a myriad of dynamic processes associated with spor-
ulation, such as the formation of the polar septt29¢
131], the migration of the motherell membrane around
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)/,

FIGURE 7: Progress in our understanding of SpaiHiated chromosome translocation A) Fluoresence microscopy images of a wil(
type (WT, left) and of apolllEmutant (spollIE right) strain ofB. subtilis The upper panels show the DNA stained with DAPI (blue), an
lower panels the overlay of DABtained DNA and the membranes s&dhwith FM4-64 (red). In the upper panel, forespores are indicat
by single arrowheads, and mother cells by double arrowheads -l forespores contain a complete chromosome. However, forespc
of spolllBmutant strains contain only ~30% of a chrasnme, and he rest remains trapped in the mother céB) Fluorescence microscop
image of a sporulating cell producing a SpeBFEP fusion during chromosome translocation. The upper panel shows the DNA staine
DAPI (blue) and the GFP signal, arel ldwer parl shows in addition the membranes stained with FM44(red). SpolllE forms a foct
(green) at septal midpoint, where the chromosome is trapp@).SpolllE visualized by supesolution microscopy (PALM) in living ce
with thicker polar seta. SpolllEorms two foci (dual foci), which are separated by a distance equivalent to the septal thickness, ind
that one cluster is present at one side of the septum and the other at the opposite side. Reproducqd@@igniD) Model for the organiza-
tion and function of the SpolllE translocation complex &t $eptal milpoint. SpolllE forms two sidey-side channels spanning both sept
membranes (red lines), thereby allowing the simultaneous transport of both arms of the chromosome from the mother cebt (hMC
forespore (FS). Translocation is powered pgIBE moto domains at the mothecell side of the septum (green circles), which are activa
to export the chromosome to the forespore. Forespore motor domains (red circles) remain ing€)i€eycelectron microscopy of a wid
type sporulating celltép), and d aspolllEmutant (bottom). Membranes are annotated as follows: forespore membrane, pink; matier
membrane, purple. Chromosome translocation is required to maintain the shape of the forespore. In the absence of chromersiovat

tion, the foresporeappears deflated. Reproduced with permission frir@0].

the forespore during engulfmertt32¢139], the synthesis
of the peptidoglycan cortekl40], and the assembly ohe
proteinaceous coaf20, 141], to name a few.

HISTORICAL CONTINGENCIES

Sporulation in B. subtilisis one of the most well
understood developmental processes, but there are still
gaps in our understanding, which are due in part to the
historical contingencies of sporulation research. Muth
the spowlation research performed so far has focused on
understanding the role of different developmental genes in
spore formation. The definition apogenes those that,
when mutated, impair the ability to form spores without
affecting vegetative gnotht has lilkely biased our under-
standing of sporulation, as it necessarily excluded all the
essential genes and neessential genes that are also re-
quired for optimal vegetative growth. It has therefore re-
mained unclear whether essential housekeeping pruiei
involved in central metabolism, redox reactions, protein

OPEN ACCEgsvww.microbialcell.com 10

folding, and translational regulation play a significant role
in assembling the spore, and if so, if they are required in a
specific cell or during a specific stage of sporulation. Recent
high-throughput stulies have identified vegetative pro-
teins that likely play a role in sporulati¢h42, 143]. Genet-

ic tools to interfere with the function of specific proteins in
a precise, celland developrental stagespecific manner
during spore formation have also recently been developed
(Fig. 6Cand D) [113], and these present a promising new
approach 6r understandng the role played by these and
other vegetative proteins during endospore formation.
Although many facets of sporulation remain unclear, new
technologies and innovative approaches will continue to
advance our knowledge of this remarkable pess.

A more general aspect of endospore formation that
remains poorly studied is how the process functions in
different species. Endospore formation occurs in a broad
range of bacterial species that belong to an ancient and
exceptionally diverse bacteriagbhylum, the Firmicutes
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[144]. However, most mechanistic studies on sporulation
over the previous 50 years have been don8irsubtilis as
this organism is particularly amenabto genetic tidies.

Placing the focus on a single species has provided us with

extraordinarily detailed descriptions of sporulation but, at
the same time, has prevented us from fully appreciating
the diversity of endospore formation. In recent yeatics-
tridioides difficile t formerly known asClostridium dif-
ficilet has become a model for endospore formation in
anaerobic bacteria. Studies in this organism reveal that,
although the general scheme of endospore formation is
similar to that ofB. subtilis there are mechaistic differ-
ences that affect every sporulation stage, from initiation to
germination [145¢151]. In addition, whileB. subtilisand

C. difficileproduce one spore per sporangium, tleeare
some species that can produce tab2, 153], and others
that can produce mulgile spores[154¢156], opening the
intriguing possibility that the sporulation pathway was- co
opted as a reproductive strategy in some species, or that
sporulation evolved from what was originally a reproduc-
tive strategy[157¢160]. Clearly, this is a rich and interest-
ing area of future research that will require the develop-
ment of new culturing techniques and genetic tools to ma-
nipulate nonmodel bacteria.Understanding the diversity
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