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ABSTRACT   
Diarrheagenic Escherichia coli (DEC) is the main cause of diarrhea in children 
under five years old. The virulence of DEC is tightly regulated by environmental 
signals influenced by the gut microbiota and its metabolites. Short-chain fatty 
acids (SCFAs) are the main metabolic product of anaerobic fermentation in the 
gut, but their role in DEC diarrhea has not yet been established. In this study, we 
determine the levels of acetate, propionate, and butyrate in stool samples from 
children with diarrhea caused by DEC, and we identify bacteria from the fecal gut 
microbiota associated with the production of SCFAs. The microbiota and SCFAs 
levels in stool samples obtained from 40 children with diarrhea and 43 healthy 
children were determined by 16S rRNA gene sequencing and HPLC, respectively. 
Additionally, shotgun metagenomics was used to identify metagenome-
assembled genomes (MAGs) in a subgroup of samples. The results showed 
significantly higher levels of all SCFAs tested in diarrheal samples than in healthy 
controls. The abundance of Streptococcus sp., Limosilactobacillus, Blautia, 
Escherichia, Bacteroides, Megamonas, and Roseburia was higher in the DEC group 
than in healthy individuals. Functional analysis of bacteria and their main 
metabolic pathways made it possible to identify species MAGs that could be 
responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, 
based on our results and published data, we suggest that SCFAs may be important 
in the crosstalk between the microbiota and DEC pathogens in the gut. 
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INTRODUCTION 
The environment and/or bacterial regulators play a 
significant role in the highly regulated process of virulence 
gene expression in enteropathogens [1–3]. Under well-
defined environmental conditions, the expression of 
virulence genes occurs at a specific site, allowing bacteria 

to initiate the infection process [4]. The resident 
microbiota and its metabolites strongly regulate the 
environment that pathogens like diarrheagenic Escherichia 
coli (DEC) encounter when they colonize the intestinal 
mucosa [4–6]. Several reports have demonstrated that 
compared to healthy children, a distinctive fecal gut 
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microbiota is found in children suffering from diarrhea, 
such as those associated with infection by DEC pathotypes 
[7, 8]. The changes in microbiota composition have been 
linked to metabolites found in the intestinal tract that may 
favor the interactions between the intestinal microbiota 
and the infecting pathogen [8]. Compounds such as mucin, 
succinate, hydrogen, bile acids, autoinducers, and short-
chain fatty acids (SCFAs) have been implicated in this 
crosstalk between the microbiota and the pathogen [9]. 

SCFAs are generated through the fermentation of 
dietary fibers, mainly by anaerobic bacteria in the gut 
microbiota [10]. The primary SCFAs in the human intestine 
include acetate, propionate, and butyrate. The 
concentrations of these molecules vary along the 
gastrointestinal tract, from lower concentrations in the 
ileum (20–40 mM) to higher concentrations in the cecum 
and proximal colon (70–140 mM) [11, 12]. SCFAs play key 
roles in many physiological processes, such as lipid 
metabolism, appetite regulation, and immune function. 
Also, SCFAs are important molecular signals between the 
microbiota and the host [13–15]. Several enteropathogens, 
such as Campylobacter jejuni, Shigella spp., Salmonella 
spp., Listeria monocytogenes, and DEC, can sense and 
respond to SCFAs [16]; however, the evidence obtained so 
far is controversial. Some reports suggest that SCFAs might 
protect the host against enteropathogens, while others 
have demonstrated that virulence is closely related to 
SCFAs levels, inducing the expression of virulence factors 
[17, 18]. 

SCFAs production involves active enzymatic pathways 
in some intestinal bacterial groups [19]. Metagenomic and 
culturomic approaches have facilitated identifying and 
characterizing bacteria responsible for SCFAs production. 

Acetate, the most abundant SCFAs in the gut, is produced 
by most enteric bacteria, including Akkermansia, 
Bacteroides, Bifidobacterium, Prevotella, Ruminococcus, 
Blautia, Clostridium, and Streptococcus. Unlike acetate, 
butyrate and propionate production is more conserved and 
restricted to specific genera. Butyrate-producing species 
belong to Faecalibacterium, Eubacterium, Roseburia, 
Anaerostipes, Coprococcus and Subdoligranulum genera, 
while propionate-producing bacteria belong to Bacteroides, 
Prevotella, Alistipes, Roseburia, Eubacterium, Blautia, 
Coprococcus, Phascolarctobacterium, and Akkermansia 
[20–22]. 

Despite SCFAs having been linked to regulating 
enteropathogen virulence, little is known about the 
number of SCFAs present during diarrheal episodes caused 
by DEC, particularly in young children. In this study, we 
sought to determine the SCFAs levels in stool samples from 
children with diarrhea by DEC and to identify the bacterial 
species from fecal gut microbiota associated with the 
production of SCFAs. Our results increase the knowledge of 
the association between SCFAs during diarrhea and 
changes in the microbiota composition associated with the 
presence of DEC pathogens. 
 
RESULTS  
SCFAs levels in stool samples from the DEC and the 
healthy groups  
We measured the levels of acetate, propionate, and 
butyrate in stool samples of the DEC (40 samples) and 
healthy (43 samples) groups and found significant 
differences in all SCFAs tested (Figure 1). For acetate, 
median values were 30.4 (15.1-54.3) µmol/gr for samples 
in the DEC group compared to 16.5 (11.0-23.8) µmol/g for 

 
 

FIGURE 1: Levels of SCFAs in stool samples. Stool sample concentrations of acetate, propionate, and butyrate were identified using high-
performance liquid chromatography (HPLC). Red dots represent DEC-positive samples, while green dots represent samples from healthy 
children. Values are normalized by dry pellet weight. Analysis was performed using the Mann-Whitney test. The p-values for each SCFAs 
are displayed in the figure. The number of samples (n) included in each group is stated in parentheses.  
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the healthy group. For propionate and butyrate, the 
median (IQR) values were 12.9 (8.9-20.8) µmol/g and 7.4 
(5.7-12.6) µmol/g for samples in the DEC group, compared 
to 5.1 (4.1-7.7) µmol/g and 3.1 (2.2-5.2) µmol/g for the 
healthy group, respectively. Therefore, all measured SCFAs 
from DEC-positive diarrheal samples were higher than 
those from healthy controls. When comparing the levels of 
SCFAs within DEC samples based on pathotypes, elevated 
levels of the three measured SCFAs in EPEC samples were 
noted compared to healthy controls. Furthermore, we 
found higher levels of acetate and propionate in STEC 
samples compared to healthy controls. For EAEC, no 
difference of SCFAs compared to healthy controls was 
found (Supplementary Figure 1). 
 
SCFA-producing genera are present in the fecal gut 
microbiota  
To identify specific genera associated with the levels of 
SCFAs found in the stool samples, we first determined the 
fecal gut microbiota composition by 16S rRNA gene 

analysis from over 20,000 sequences per sample 
(Supplementary Table 1). A total of 2,537 amplicon 
sequence variants (ASVs) were obtained between both 
groups and reduced to 459 unique taxonomic 
classifications. Diversity analysis showed lower alpha 
diversity in the DEC group than in the healthy group 
(Figure 2). The redundancy analysis (RDA) of the ASV data 
showed a different microbiota composition and 
community structure between DEC and healthy groups, 
with clear group clustering. No differences in the 
distribution of samples within the groups when considering 
the two age levels evaluated (Figure 2). Also, a significant 
difference in the Firmicutes/Bacteroidota ratio between 
the healthy group (1.15 ±.0.49) and DEC group (7.2 ±1.53) 
was observed (Supplementary Figure 2). Of all SCFA-
producing genera, a significant abundance of the genera 
Escherichia-Shigella and Streptococcus was found in the 
DEC group compared to the healthy group using the non-
parametric method and differential analysis; the genera 
Faecalibacterium, Bacteroides, Blautia, and Ruminococcus 

 
FIGURE 2: Community structure DEC-positive and healthy stool samples and diversity indexes. The distribution of the microbial 
community in each sample and its clustering based on the sample group were evaluated using a redundancy analysis (RDA). Red and 
green symbols represent the microbiota compositions observed in the DEC and healthy groups, respectively. Triangles represent samples 
of children under 3 years old and squares of children between 3 and 5 years of age. The analysis used a sample classification as the 
explanatory matrix and relative ASV abundance as the response matrix. The data were normalized with a double square root 
transformation. The clustering significance of the RDA was assessed by ANOVA, utilizing the vegan package for R. The subplot illustrates 
the variety of alpha diversity indexes of samples for both the DEC and healthy groups. 
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were significantly higher in the healthy group than in the 
DEC group only with the non-parametric approach (Figure 
3, Supplementary Figure 3). Consequently, we identified 
specific genera that can produce SCFAs associated with 
DEC-positive diarrheal stool samples. 

Correlation between SFCA levels with fecal gut microbiota  
We further explored the correlations between the relative 
abundance of the gut microbiota and SFCA levels in stool 
samples from the DEC and healthy groups. The heatmap 
representing Pearson correlations for the abundance of 
differential bacteria found in the DEC group and quantified 
SCFAs in feces revealed that levels of acetate, propionate, 
and butyrate were positively correlated with the 
abundance of Faecalibacterium, Roseburia, Blautia, and 
Subdoligranulum; the Akkermansia genera abundance was 
only positively correlated with butyrate levels. Regarding 
negative associations in the DEC group, a negative 
correlation with the abundance of the genera Veillonella, 
Streptococcus, and Haemophilus was found with the fecal 
levels of acetate and propionate. In addition, the genus 
Raoultella was negatively correlated with propionate fecal 
levels (Figure 4A). Faecalibacterium abundance was 
positively correlated with all three SCFAs in the healthy 
group. In addition, a positive correlation was found 
between Roseburia genus abundance and propionate and 
butyrate levels. Bacteroides genus abundance was 
negatively correlated with fecal levels of all tested SCFAs 

(Figure 4B). Our data suggest a possible association 
between SFCA levels in stool samples and the bacterial 
genera identified from the fecal gut microbiota. 
 
Correlation between fecal SFCA levels and bacterial 
species identified from assembled genomes  
Shotgun metagenomics was used to identify metagenome-
assembled genomes (MAGs) in a subgroup of samples. 
Clustering based on microbiota composition 
(Supplementary Figure 4) and fecal SFCA levels 
(Supplementary Figure 5) confirmed the representability of 
the selected samples for metagenomic analysis. The 
analysis of metagenomes using Nonpareil showed a higher 
sequencing coverage (C) in DEC samples and higher 
sequence diversity (Nd) in healthy samples compared to 
DEC, results that mirrored the diversity observed by 16S 
sequencing (Supplementary Figure 6 A-B). The expected 
sequencing effort for 95% of coverage was not significantly 
different from what was observed (Supplementary Figure 
6C). The binning of contigs from metagenomes resulted in 
659 MAGs. After checking for completeness and 
contamination, 309 MAGs were used in the dereplication 
process. Of these, 63 were unique MAGs, and 54 were 
genospecies (Supplementary Table 2). Biological and 
statistical associations between MAGs and fecal levels of 
SCFAs using MetOrigin showed at the genera level that the 
higher levels of acetate in the DEC group compared to the 
healthy group were positively associated with the high 
presence of Streptococcus, Bacteroides, Megamonas, 
Escherichia, and Limosilactobacillus, as well as the 
decrease of Lactobacillus, Bifidobacterium, and 
Ruminococcus in DEC samples compared to the healthy 
group. On the other hand, higher levels of propionate in 
the DEC group were also related to the presence of 
Streptococcus, Bacteroides, Escherichia, Limosilactobacillus, 
and a decrease in Ruminococcus. Other genera involved in 
the production of acetate and butyrate, which were less 
abundant in the DEC group, were negatively associated 
with high SFCA levels (Supplementary Figure 7).  
Positive associations were reduced and constrained to 
fewer organisms at the species level. This analysis showed 
positive associations between acetate and propionate fecal 
levels in the DEC group, principally with the presence of 
the following species in the DEC group: Bacteroides fragilis, 
Limosilactobacillus mucosae, and Escherichia coli. 
Additional positive associations were observed between 
acetate levels and the presence of Megamonas funiformis 
and Bifidobacterium breve. The presence of 
Bifidobacterium longum in the DEC group compared with 
that in the healthy group was also negatively correlated 
with the levels of acetate in the DEC group. The presence 
of Blautia species, Anaerostipes hadrus, Anaerobutyricum 
hallii, Faecalibacterium prausnitzii, and some other 
Bifidobacterium species was negatively associated with the 
high levels of acetate and butyrate detected in the DEC 
group (Figure 5). Although specific bacteria were 
associated  with the  detected  levels  of  SCFAs,   no  corre- 

 
FIGURE 3: Genera abundance of DEC and healthy samples. The 
classification of ASVs was done using the SILVA 138 database as a 
reference. Relative abundance of the main genera (abundance > 
1%) found in both groups. Genera with an abundance lower than 
1% are grouped as "others." Significant genera were determined 
using the Mann-Whitney U test. Significance is indicated (**p < 
0.01, *p < 0.05). 
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FIGURE 4: Correlation between identified genera and detected levels of SCFAs. Detected acetate, propionate, and butyrate levels within 
DEC (A) and Healthy (B) groups were correlated using Pearson with the relative abundance of the main genera in each group. Only 
significant (p < 0.05) correlations are shown; non-significant correlations are shown as empty squares. The intensity of correlation is 
indicated by the shifting in colors and size of the circles. 
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lations were found with the presence of terminal genes 
involved in the bacterial production of acetate, propionate, 
and butyrate (Supplementary Figure 8). Our data highlight 
specific bacterial species from the gut microbiota 
associated with the levels of SCFAs in DEC-positive diarrhea. 
 
DISCUSSION 
Changes in microbiota composition have been described in 
several infectious diseases, including diarrhea [23]. In 
previous studies, we highlighted the distinctive microbiota 
associated with DEC-positive diarrhea in children under 5 
years of age and the potential metabolic environment 
associated with the disease [7, 8]. To further study the 
metabolic environment associated with diarrhea, which 
might be involved in DEC pathogenicity, we focused on the 
role of acetate, propionate, and butyrate, the most 
abundant SCFAs in the gut. These metabolites, synthesized 
by the gut microbiota, have been linked to human health 
and disease [21, 23–25]. Considering that the 

concentration of SCFAs varies along the gastrointestinal 
tract, it is unsurprising that pathogens can sense these 
molecules to trigger the expression of virulence factors in 
enteric pathogens along the gastrointestinal tract. In this 
sense, several groups have shown that SCFAs might act as 
signaling molecules for several enteropathogens, 
regulating the expression of adhesins, mobility, and 
virulence regulators [18, 26]. For DEC, the role of SCFAs in 
DEC pathogenicity has been evaluated, and some 
mechanisms have been proposed [16, 18, 27–29], but the 
involvement of the gut microbiota of children remains 
unclear. 

When comparing the detected levels within diarrheal 
samples against the control group, a significantly higher 
amount of all SCFAs tested was found in the DEC samples 
(Figure 1). Higher levels of the three measured SCFAs on 
EPEC samples were found compared to healthy controls. 
Furthermore, we found higher levels of acetate and 
propionate in STEC samples compared to healthy controls 

 
FIGURE 5: Summary of network co-metabolism in DEC samples at the species level. The network illustrates the relationships between 
bacteria and significant SCFAs in DEC samples. The circles in the diagram symbolize bacteria. The red circles indicate highly abundant 
bacteria, with a soft red color indicating non-significant abundance and bold red indicating significant abundance. The green circles 
represent a decrease in bacterial presence, with a soft green color indicating a non-significant decrease and bold green indicating a 
significant reduction when comparing DEC samples to healthy individuals. Diamonds symbolize metabolites (bold red for significant 
presence). The biological associations are represented by red and green lines, with red indicating positive and green indicating negative 
associations. Soft lines suggest non-significant associations, while strong lines imply significant associations. 
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(Supplementary Figure 1). Fecal SCFAs in adult patients 
suffering from diarrhea have been reported; in patients 
suffering from infection by Vibrio cholerae, there were 
higher levels of SCFAs than in patients with diarrhea 
negative for this pathogen [30]. Meanwhile, fecal SFCA 
levels of adult patients with bile acid diarrhea and irritable 
bowel syndrome (IBS) and healthy controls are not 
significantly different in the amounts of acetate, 
propionate, and butyrate [31]; adult patients with 
antibiotic-associated diarrhea present significantly lower 
amounts of SCFAs than healthy controls [32]. A study on 
obesity-linked gut microbiota dysbiosis to high levels of 
SCFAs, with higher levels in individuals with diarrheal stools 
and lower levels in normal or solid stools. Higher SFCA 
levels were positively associated with gut microbiome 
dysbiosis and gut permeability [14]. These findings on 
SCFAs and dysbiosis seem to be in line with our results. 

To demonstrate dysbiosis in comparison to healthy 
children, our and other research groups have concentrated 
on identifying changes in the gut microbiota in children 
with diarrhea [7, 8, 33, 34]. In this work, the fecal gut 
microbiota composition by 16S rRNA gene analysis reveals 
a lower beta diversity was observed within the diarrheal 
group compared to the healthy samples (Figure 2), in 
addition to a significant difference in the 
Firmicutes/Bacteroidetes ratio (Supplementary Figure 2). 
To identify specific species with the capability to produce 
SCFAs, a metagenome analysis of a subgroup of samples 
was performed. Recovered MAGs mostly belong to 
Firmicutes, bacteria involved in acetate production through 
the Wood-Ljungdahl pathway or from pyruvate via acetyl-
CoA Streptococcus, Anaerobutyricum, Ruminococcus [35], 
and propionate producers such as Akkermansia, Roseburia, 
and Bacteroides [36]. Regarding butyrate production, we 
acknowledge Faecalibacterium prausnitzii and other 
producers, which also produce acetate and propionate. 
This multirole complicates the association of specific 
species with the detected SFCA levels. Our data also show 
that the expected contribution of specific genera to the 
levels of SCFAs can differ from what could be determined 
at the species level, possibly due to the absence of specific 
genes in some organisms, as observed with Streptococcus 
and Streptococcus salivarius from assembled genomes and 
their association with the production of acetate and 
propionate (Figure 5). Previous studies have highlighted S. 
salivarius strains as new potential probiotics; metabolites 
produced by these organisms protected mouse fibroblasts 
against oxidative stress, exhibited antimicrobial activity, 
and had an antiproliferative effect on liver and breast 
cancer [37] or inhibited the activation of the NF-kB 
pathway in HT-29 cells [38]. However, this effect could not 
be attributed to any specific metabolite. Furthermore, a 
negative correlation was observed between SFCA levels 
and these species. In bacteria associated with fecal levels 
of acetate and propionate in DEC samples, there is no 
unique role for these organisms. For example, Megamonas 
funiformis has been defined as a harmful bacterium due to 
its opportunistic presence in inflammatory conditions [39], 
while Limosilactobacillus mucosae (formerly known as 

Lactobacillus mucosae) has been classified as a potential 
probiotic due to its ability to adhere to the intestinal 
epithelium and protect against pathogens like E. coli and 
increased butyrate levels in piglet stool samples [40, 41]. In 
the case of E. coli, this bacterium excretes acetate upon 
growth on fermentable sugars, but it can switch the Pta-
AckA pathway from production to consumption, co-
consuming glucose and acetate under excess glucose [42]. 
It is important to note that the recovered MAGs identified 
as E. coli were associated with commensal species and not 
phylogenetically related to DEC. A recent study evaluated 
the effect of SCFAs on 140 pathogenic E. coli isolates, 
finding that they restored the susceptibility of almost all 
isolates to tested β-lactams and inhibited motility. The 
expression of bacterial genes under colonic conditions was 
reduced or suppressed concentration-dependent, but 
lower concentrations resulted in increased expression of all 
evaluated genes [28]. 

SCFAs play a crucial role in immune modulation during 
gut inflammation, as dysbiosis and inflammation can 
compromise barrier integrity, creating opportunities for 
pathogens and cellular damage. SCFAs can modulate 
immune responses through G protein-coupled receptors 
(GPR), toll-like receptors (TLR), and their associated 
signaling cascades [43, 44]. However, several studies have 
reported contradictory results, with some showing that 
butyrate increases the sensitivity of intestinal cell lines to 
Shiga toxin. In contrast, others show dose-dependent 
protective and non-protective responses [24, 45]. Several 
mechanisms could account for the high fecal SCFAs levels 
in diarrheal samples compared to healthy samples found in 
this study. We know that diarrhea is characterized by 
inflammation of epithelia and less absorption of 
metabolites, which could also lead to increased SFCA levels 
in stool samples [46]. We have observed changes in the 
microbiota and the diarrheal process itself that increase 
the levels of some SCFAs in the colon, especially acetate, 
which could modulate the immune response and virulence 
of pathogens in the gut, but a better approach might 
involve including other metabolites, such as lactate, 
valerate, and isovalerate, which are interconnected in the 
bacterial production of acetate, propionate, and butyrate. 
Another possible mechanism might be related to gene 
expression in producing SCFAs. A previous study using 
metagenomic data from non-industrialized and 
industrialized populations reported differences in the 
abundance of genes responsible for SCFAs [47]. Using our 
metagenomic data, we found no differences between the 
DEC and healthy groups in the abundance of terminal 
genes for producing acetate, propionate, and butyrate 
(Supplementary Figure 8). We acknowledge that 
transcriptomic data from these samples would be useful to 
determine the real impact of the evaluated genes and 
organisms present; however, this analysis was not possible 
considering the storage conditions of the samples in our 
study. Finally, it is important to note that the concentration 
of SCFAs produced by the gut microbiota in the colon is 
influenced by the absorption of these molecules and the 
fluid and electrolyte imbalance during diarrhea episodes 
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[48]. The mechanism(s) that could explain our findings 
should consider all the above factors to decipher the 
mechanism underlying the high levels of SCFAs in diarrheal 
samples. In vitro models mimicking colon conditions could 
help demonstrate the effect of SCFAs produced by the gut 
microbiota on DEC pathogenesis and clarify the impact of 
high SCFAs levels on diarrhea caused by DEC. 

This study aimed to investigate the metabolic 
environment associated with DEC pathogenicity and 
measure the levels of key SCFAs in the gut. The results 
showed that higher levels of acetate, propionate, and 
butyrate were associated with DEC-positive diarrhea 
compared to healthy stools. Additionally, correlations were 
found between genera and their SCFAs production, and a 
higher redundancy of genomes was observed in diarrheal 
samples than in the healthy group. This study might help 
decipher the molecular mechanisms underlying DEC 
infection and enable strategies for preventing or treating 
diarrhea. 
 
MATERIALS AND METHODS 
Patients and Samples 
Stool samples obtained from children under 5 years old 
with acute diarrhea, defined as more than three liquid 
stools per day (WHO definition, [49]), admitted to Dr. Luis 
Calvo Mackenna Hospital (HLCM), and control stool 
samples obtained from healthy children attending the 
HLCM daycare center were collected during 2019–2020. 
The stool samples were tested for enteropathogen 
identification using a FilmArray® gastrointestinal panel 
(FilmArray® GI) [50]. FilmArray® GI is an FDA-cleared 
qualitative syndromic PCR system that detects the 
following gastrointestinal pathogens: viruses (Adenovirus 
F40/41; Astrovirus; Norovirus GI/GII; RotavirusA; and 
Sapovirus I, II, IV and V), bacteria (C. jejuni; C. coli; C. 
upsaliensis; C. difficile; P. shigelloides; Salmonella; Yersinia 
enterocolitica; V. parahaemolyticus; V. vulnificus; V. 
cholera; Shigella; and DEC pathotypes EAEC, EPEC, ETEC, 
STEC, and EIEC), and parasites (Cryptosporidium; C. 
cayetanensis; E. histolytica; and G. lamblia). After 
FilmArray® GI testing, all the stool samples were kept at -
80°C. In this study, 83 samples were used, including 40 
diarrheal samples that were only positive for one DEC 
pathotype (DEC group) and age-matched control samples 
(Healthy group) that were negative for the presence of 
pathogens, as well as three additional samples from this 
healthy group (Table 1). Every child in this study was a 
resident of Santiago, Chile, and they all ate a standard diet 
without being breastfed. Parents declared that their 
children had not consumed probiotics, prebiotics, or 
antibiotics in the two months prior to sample collection at 
the time of enrollment.  
 
Ethics 
This study was conducted in accordance with the 
Declaration of Helsinki guidelines. The Universidad de Chile 
Ethics Committee (No. 032-2020) approved the study 
protocol. Written informed consent was obtained from all 
the parents on behalf of their children. 

 
SCFAs quantification 
A 500 mg aliquot of stool was diluted in molecular-grade 
distilled water and centrifuged at 5,000 x g for 15 min, and 
supernatants (fecal waters) were collected and filtered 
with a 0.2 μm filter. Fecal waters were used to determine 
acetate, propionate, and butyrate using high-pressure 
liquid chromatography (HPLC; Agilent Technologies Inc.) at 
the HLCM biochemistry laboratory, following a published 
protocol [51]. Briefly, 100 μL of concentrated HCl were 
added to 1 mL of fecal water, followed by a vortex mixing 
step of 15 s. The samples were extracted for 20 minutes 
(gently rolling) using 5 mL of diethyl ether. Next, samples 
were centrifuged for 5 min at 3500 rpm, and 500 μL of 1M 
solution of NaOH was added to the supernatant. Later, 
samples were extracted again for 20 min, followed by a 
centrifugation step. The aqueous phase was transferred to 
an autosampler vial, and 100 μL of concentrated HCl were 
added. After vigorous vortex mixing, a 20 μL aliquot was 
injected onto the HPLC-UV apparatus (Agilent Technologies 
series 1260 infinity), using a Hypersil Gold aQ column (150 
mm×4.6 mm i.d.) with particle sizes of 3 μm (Sercolab, 
Merksem, Belgium). The mobile phase consisted of 20 mM 
of NaH2PO4 in HPLC water (pH 2.2) and acetonitrile. The UV 
detector was set at a wavelength of 210 nm. The dry 
weight of the pellets was used to normalize the levels of 
SCFAs, as reported [24], and results were expressed as 
μmol of SCFAs per gram of stool. The statistical analysis for 
each compound was conducted using the Mann-Whitney 
test to compare the DEC and healthy samples. A p-value 
<0.05 was considered statistically significant. All analyses 
were performed using GraphPad Prism software 
(GraphPad, GraphPad Inc., Pittsburgh, PA, USA). 
 
DNA Extraction and 16S rRNA gene sequencing 
Total DNA was extracted from each sample (200 mg of 
stool) using the QIAamp Power Soil (Qiagen) [52], 
quantified using a Synergy HT® spectrophotometer (Biotek) 
[53], and stored at -20 °C. DNA samples were shipped to 
the Molecular Research DNA Laboratory (MrDNA Lab; TX, 
USA) for DNA amplification and sequencing of the V3-V4 
regions of the 16S rRNA (primers 341F 
(CCTACGGGNGGCWGCAG) and 785R 
(GACTACHVGGGTATCTAATCC) [54]), using the Illumina 
MiSeq 2 × 300 PE. Raw Illumina data (without adapters) 
was processed locally as follows. Briefly, raw sequences 

TABLE 1. Characteristics of the samples used in the study. 

Characteristics DEC group Healthy 
group 

Number of samples 40 43 

Age in months (in-
terquartile range) 36.5 (25- 51) 36.7 (29 - 47) 

Pathogen detected 
(number of samples) 

STEC (11); EAEC (11); 
EPEC (10); ETEC (6); 

Shigella/EIEC (2) 
None 
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were processed using QIIME2 [55] software and its default 
plugins: demux for demultiplexing sequences and q2-
cutadapt for primer removal. The default denoising 
parameters of DADA2 [56] were used until the formation 
of amplicon sequence variants (ASVs) [57]. ASVs were 
taxonomically classified at the genus level using the SILVA 
REF138 database as a reference [58]. The presence of ASVs 
was scaled using a double square root to decrease the 
impact on the diversity of E. coli infection in the DEC group 
and normalized to relative abundance. The genera present 
in all samples were compared between groups using the 
Mann-Whitney U test, and untransformed data were 
evaluated using differential abundance with the analysis of 
the composition of microbiomes (ANCOM) [59] plugin of 
QIIME2 [55]. The vegan, Philoseq, Microbiome, and ggplot2 
packages [60–63] of R software [64] were used for 
correlation analysis, sample clustering, determination of 
alpha (Simpson, Shannon, richness indexes), and beta 
diversity (RDA) [65] analyses, and graph plotting. 
Correlations between the levels of detected SCFAs and the 
abundance of bacterial genera were determined using the 
stats package [64] from R. For correlations, samples 
without detected levels of SCFAs were excluded from the 
analysis; the genera not correlated with any of the 
detected SCFAs were not graphically represented. 
 
Shotgun Metagenomics 
To identify specific bacterial species associated with the 
observed levels of SCFAs within each group, ASV 
abundance was used to select a subset of samples for 
shotgun metagenome sequencing. We selected 16 samples 
per group, using the following criteria: age between 36 and 
60 months and detectable levels of SCFAs. First, samples 
were clustered based on microbiota composition using the 
Manhattan distance and Ward2 [66] methods. Twenty 
samples that were the furthest from the opposite group 
were selected. Additionally, as supplementary criteria, only 
samples from children over 3 years were chosen because 
their microbiota has been described as more stable, and 
acetate levels are expected to be the most abundant in the 
gut. Furthermore, only samples with SFCA levels within 
physiological proportions were included. The final subset 
for metagenome analysis comprised 16 DEC samples and 
16 control samples, and the final subset for metagenome 
analysis included 16 DEC samples and 16 control samples. 
To evaluate the representativeness of the original samples 
and subgroups, samples were clustered again based on 
microbiota composition, and SFCA levels between DEC and 
healthy subgroups were compared. Shotgun metagenomic 
sequencing of the subgroup of 32 samples was performed 
using a 2 × 150 bp PE MiSEQ Illumina (MrDNA Lab). Raw 
data was trimmed to maintain the minimum length of 
sequences at 100 bp using FastQC [67] and bbduk(ktrim=r, 
k=28, mink=12, hdist=1, tbo=t, tpe=t, qtrim=rl, trimq=20, 
minlength=100) [68]. Trimmed data was coupled using the 
Enveomics metagenomic package 
(~/enveomics/Scripts/FastA.interpose.pl) [69] and finally 
assembled using IDBA_ud (~/idba-master/bin/idba_ud) 
[70] with a minimum contig size of 500 bp. The quality of 

the assemblies was determined using the N50 parameter 
and Nonpareil [71]. MaxBin2 [72] was used for binning 
sequences, with a minimum contig length of 2,000 bp. Raw 
16S rRNA sequencing and metagenomics data have been 
published in the Ebi-ENA repository under the ERP146121 
project number. 
 
Species determination and mapping 
Metagenomes were completely assembled to determine 
the species present in the samples and to evaluate the 
presence of genes associated with the production of 
acetate, propionate, and butyrate. The quality of the 
metagenome-assembled genomes (MAGs) was evaluated 
using CheckM [73], and only MAGs with completeness 
above 60% and contamination below 10% were maintained. 
As a final step in the selection, MiGA@XSEDE [74] was used 
to dereplicate the MAGs. Finally, GTDBTk [75] was used for 
the taxonomic affiliation of MAGs. Metagenomic reads 
were mapped to dedicated MAGs using BLASTn. Reads 
mapping at >95% similarity and 70% coverage were used 
for the MAG abundance analysis, and the value was 
normalized by the average genome size, determined using 
MicrobeCensus [76], and then normalized by percentage. 
Metorigin [77] was used to evaluate the associations 
between MAGs and metabolic pathways involved in the 
detected levels of SCFAs. Additionally, we used Prodigal 
[78] to predict coding sequences from non-repetitive 
MAGs and utilized BLAST+ [79] to align them with target 
genes. Gene sequences related to the generation of 
acetate, propionate, and butyrate were acquired from the 
UniProt repository [80]. The ackA gene was assessed for its 
involvement in acetate production, whereas the mmdA, 
lcdA, and pduP genes were identified for their role in 
propionate production. The but and buk genes were 
mapped to determine their role in butyrate synthesis, 
while the rpoB gene was employed as a reference gene 
[81]. 
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