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ABSTRACT  Lipidomic analysis in diverse biological settings has be-
come a frequent tool to increase our understanding of the processes 
of life. Cellular lipids play important roles not only as being the main 
components of cellular membranes, but also in the regulation of cell 
homeostasis as lipid signaling molecules. Yeast has been harnessed 
for biomedical research based on its good conservation of genetics 
and fundamental cell organisation principles and molecular path-
ways. Further application in so-called humanised yeast models have 
been developed which take advantage of yeast as providing the ba-
sics of a living cell with full control over heterologous expression. 
Here we present evidence that high-performance thin-layer chroma-
tography (HPTLC) represents an effective alternative to replace cost 
intensive mass spectrometry-based lipidomic analyses. We provide 
statistical comparison of identical samples by both methods, which 
support the use of HPTLC for quantitative analysis of the main yeast 
lipid classes. 
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INTRODUCTION 
The analysis of cellular lipidomics as a powerful tool to 
characterise cells or cellular states has gained a lot of at-
tention throughout the last two decades [1]. Mass spec-
trometry-(MS) assisted lipidomic analyses have been de-
veloped as a routine to analyse lipidomes of basically any 
cell type, tissue or cell-organelle from any species [2–6]. 
Importantly, lipidomic changes can be associated with age-
ing [7–9] or manifest in a diversity of diseases. These in-
clude neurodegenerative diseases such as Alzheimer´s dis-
ease and dementia [10] or cardiovascular diseases [11]. 
Lipidomics are further key to investigate lipotoxicity mech-
anisms which are fundamental to lipid-related diseases 
[12]. Hence lipidomics also offer potential use as diagnostic 
markers of disease and ageing. 

The budding yeast Saccharomyces cerevisiae is used as 
a model organism in scientific research because of several 
reasons: It is easy to grow at large quantities, cultures are 

clonogenic, genetic modifications are easy to perform and 
an ever-growing number of yeast libraries [13] is available. 
S. cerevisiae has been harnessed to study cellular process-
es such as autophagy [14–19], ageing [20–25], cell death 
[26–30], lipid metabolism [31, 32], lipid droplet (LD) dy-
namics [33–36], lipotoxicity [26, 37–39], actin dynamics 
[40–44], vesicle traffic [45–48] and many others. A con-
necting feature of the before-mentioned cellular processes 
is the importance of cellular lipid analysis. Changes of cellu-
lar lipid homeostasis can significantly contribute to the 
regulation of cell health and death, which makes lipidomic 
analysis an important tool for the research community.  

MS-assisted lipidomics are very sensitive and deliver 
precise pictures of lipidomes. One draw-back of MS-
assisted lipidomics, however, is the need of expensive MS 
equipment including established lipidomic protocols or, 
alternatively if outsourced, high costs for lipidomic services 
offered by commercial companies. High-performance thin-
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layer chromatography (HPTLC) represents a low-cost alter-
native for lipidomic measurements. The method is not as 
sensitive as MS-assisted lipidomics but is suitable to detect 
the major neutral lipid and phospholipid classes especially 
if availability of sample material is not a limiting factor. 
Simple thin-layer chromatography (TLC) has been used 
extensively in the past for lipid quantification [49–54]. Im-
portantly, HPTLC has emerged as a more powerful ad-
vancement of the technique, which is mainly achieved 
through the use of improved HPTLC plates. HPTLC plates 
still mostly contain silica gel coatings such as conventional 
TLC plates, but the plates are generally smaller, contain 
pre-coatings with smaller particle size and narrower parti-
cle size distribution [55]. The plates further contain thinner 
layers and the surface is smoother [55]. These features 
altogether reduce sample quantity requirements and allow 
for more economical and faster separation with reduced 
diffusion rates [55–57]. This results in higher sensitivity, 
more efficient separation and better sample resolution, 
and also positively affects reproducibility [55–57].  

Here we describe a method to analyse basic lipidomics 
in yeast using HPTLC and offer comparison to measure-
ment of the same samples with MS-based shotgun lip-
idomics. We further validate the lipidomic quantification 
method using two established yeast knock out models (1. 
dga1∆ lro1∆ are1∆ are2∆ (quadruple knock out; QKO), and 
2. pah1∆) both bearing characteristic impacts on lipid me-
tabolism. 

 

RESULTS AND DISCUSSION 
We aimed at establishing a standard protocol for HPTLC-
based quantitative lipidomics in yeast. Since no one-
dimensional separation system with a single solvent mix-
ture is capable to fully separate neutral- and phospholipids 
in one run, we decided to separate the neutral lipids with 
n-hexane, n-heptane, diethylether, acetic acid 
(63/18.5/18.5/1 v/v/v/v) as mobile phase [58], whereas 
phospholipid separation was carried out using chlorofom 
(CHCl3), methanol (MeOH) and distilled water (dH2O) 
(32.5/12.5/2; v/v/v) as mobile phase [49, 53, 54]. Unmodi-
fied yeast lipids are invisible on HPTLC plates. We thus 
compared a number of common derivatisation procedures 
to visualise the lipid classes [49, 57]. The most commonly 
used procedures for non-specific lipid derivatisation in-
clude carbonisation (also called charring) by heating after 
spraying with 10-50% H2SO4 or MnCl2. These derivatisation 
steps irreversibly alter the lipid moieties which can be 
problematic if further analysis of the lipids is desired. Re-
versible staining with iodine vapor or usage of the fluores-
cent dye primuline are alternative non-destructive meth-
ods for visualisation [56, 57]. We decided to use the fluor-
ophore primuline as a revealing agent which in fact is not a 
derivatising agent as it only involves non-covalent interac-
tion of the fluorophore with the lipid [57]. Primuline un-
specifically interacts with the lipid hydrocarbon chains by 
dipole-induced dipole interaction. This interaction with 
long hydrocarbon chains leads to an increase in Prim-
uline´s-fluorescence intensity [59]. Primuline-based detec-

tion offers good sensitivity while at the same time not be-
ing limited to unsaturated or saturated fatty acid moieties. 
However, the fluorescence intensity signal may vary upon 
the hydrocarbon chain length. 

 
1. Establishing suitable lipid standards for neutral and 
phospholipid analysis 
We first established standard mixtures of pure single com-
ponent lipids for neutral and phospholipid separation. We 
tried to select lipid components, which structurally relate 
the most to yeast lipids with regard to carbon chain length 
and saturation/unsaturation-level. Thus, we chose sub-
stances containing palmitate (16:0), palmitoleate (16:1), 

FIGURE 1: Establishing lipid standards for HPTLC. (A) Developed 
HPTLC plate showing single components of neutral lipid standard 
(NL-Std.) with an absolute input of 5 µg (left) and 10 µg (right). (B) 
Developed HPTLC plate showing single components of phospholipid 
standard (PL-Std.) with an absolute input of 5 µg (left) and 10 µg 
(right). In the final five lanes the whole PL-Std.-mixture was applied 
at increasing concentrations from 500 ng to 12.5 µg absolute mass. 
(C) The developed HPTLC-plate from panel B was derivatised using 
ninhydrin to visualise PS and PE only. FA, fatty acid; TG, triglyceride; 
CF, cholesterylformate; SE, sterol ester; Erg, ergosterol; DG, diglycer-
ide, PI, phosphatidylinositol; PC, phosphatidylcholine; PE, phosphati-
dylethanolamine; PS, phosphatidylserine; CL, cardiolipin; PA, phos-
phatidic acid. 
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stearate (18:0) and oleate (18:1), which are the predomi-
nant acyl-moieties in S. cerevisiae [31, 60, 61]. We rea-
soned that our choice of lipids in the standard emulates  
the main components of the yeast lipidome to allow for an 
accurate quantification of the main lipid classes. 
 

The single component TLC run of the neutral lipid 
standard shows single bands for almost all of the compo-
nents which include oleic acid (OA) as representative for 
fatty acids (FA), triolein as representative for triglycerides 
(TG), cholesterylformate (CF), which was used as internal 
standard, and cholesteryl-oleate as representative sterol 
ester (SE; Fig. 1A). However, ergosterol (Erg) unexpectedly 
delivered two bands, one at the expected Rf distance and 
an additional one at the origin of application, which was 
considered as impurity and thus ignored. As diglyceride 
(DG) standard we used 1-palmitoyl-2-oleoyl-sn-glycerol, 
which also delivered two bands. The main band at the bot-
tom was considered to correctly relate to 1-palmitoyl-2-
oleoyl-sn-glycerol, whereas the upward-shifted second 
band at lower intensity was considered to be a result of 
limited acyl-migration yielding 1,3-derivatives. Since this 
second band is not properly separated from the Erg band, 
which runs at approximately the same height, the results 
for Erg are to be used cautiously or better be analysed in a 
separate run. The use of an alternative Erg product should 
also be considered to get rid of the unspecific band at the 
origin of application.  

The single component standard of phospholipids in-
cluded phosphatidylethanolamine (PE), cardiolipin (CL), 
phosphatidic acid (PA), phosphatidylcholine (PC), phospha-
tidylinositol (PI), and phosphatidylserine (PS). HPTLC-based 
separation of the individual standards at two concentra-
tions revealed one major band representative for each 
phospholipid (Fig. 1B). Additional minor bands were only 
observed at very low densities which was the case for PA 
(at the origin of application) and for CL (at the approximate 
Rf-values corresponding to PA and PC). The combined mix-
ture of PL (phosphor lipid)-standards could be separated 
efficiently at low PL-input levels. At higher application con-
centrations a full separation of PI and PS could not be 
achieved. Additional derivatisation with ninhydrine how-
ever revealed single bands for PE and PS only (Fig. 1C). 
Derivatisation with ninhydrine was thus considered man-
datory to allow for precise PS quantification at high con-
centrations, excluding any PI in our HPTLC-system. 

 
2. All major lipid classes of whole cell yeast extracts can 
be separated and quantified in two separate runs for neu-
tral and phospholipid analysis using HPTLC 
We next cultivated yeast in synthetic complete medium 
with 2% glucose and additional inositol (SCD+Ino; see note 
2) for 6, 12 and 24 hours and extracted the total lipids by 
Folch extraction according to our standard protocol. Neu-
tral lipids and phospholipids were separated in two distinct 
HPTLC analyses runs as described in results part 1 and in 
the methods section. All neutral lipids which include SE, CF 
(internal standard), TG, OA, Erg, and DG could be separat-
ed efficiently using the yeast lipid extracts at any tested 

FIGURE 2: All major lipid classes of whole cell yeast extracts can be 
separated and quantified in two separate runs for neutral and 
phospholipid analysis using HPTLC. (A) Neutral lipids were separat-
ed by HPTLC with a mobile phase consisting of n-hexane, n-heptane, 
diethylether, and acetic acid (63/18.5/18.5/1 v/v). Lipids were deri-
vatised using primuline. (B) Example chromatogram with peak inte-
gration of lane 1, corresponding to the red rectangle in panel A (Wt 
1, 6 h) (C, E) HPTLC plate showing phospholipid separation, sequen-
tially derivatised using Primulin (C) to visualize all lipids and then 
applying ninhydrin (E) to visualise lipids containing free amino-
groups such as PE and PS. As an example of chromatogram peak 
integration, representative chromatograms of lane 1 from (C) and 
(E) are shown in (D) and (F), respectively. *During the lipid prepara-
tion of the third replicate of the 12 h condition (indicated by red 
circle) material was lost, which resulted in lower overall concentra-
tion/ yield. 
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timepoint and attributed to references in the neutral lipid 
standard (Fig. 2A, B). OA-levels are at the detection limit 
with a total sample application volume of 20 µl, but effi-
cient separation is documented in the 6-hour-samples, 
where OA-levels are highest. 

The phospholipids PE, CL, PA, and PC could be separat-
ed efficiently using the developing system described in the 
methods section (Fig. 2C, D). PI and PS could only be sepa-
rated at lower concentrations, which is the case for sam-
ples harvested at 12 and 24 hours. The 6 hour-samples 
have higher PI (and PS) levels which results in inefficient 
peak separation (Fig. 2D). However, additional derivatisa-

tion with ninhydrin, which visualises compounds contain-
ing free amino groups, was used to additionally measure 
PS and PE (Fig. 2E, F). This ninhydrin-based measurement 
of PS can be used to separately quantify PS without PI and 
subsequent calculations deliver the remaining values for PI 
as well. We further noticed a third band on the ninhydrin-
derivatised plates (Fig. 2E) which relates to peak 2 in the 
chromatogram (Fig. 2F), which runs slightly further than 
the main PS band, and is best visible in the 6 h samples. We 
reason that this band is representative for PS-species or 
derivatives which occur at lower abundance in yeast. 

FIGURE 3: Comparative quantification of HPTLC-lipidomics and MS-assisted shotgun lipidomics. (A, B) HPTLC-derived neutral lipidomic 
quantification (A) and analysis of the same samples by MS-based shotgun lipidomics (B) deliver comparable results regarding absolute 
amounts of total neutral lipids in yeast. (C, D) HPTLC-derived phospholipidomic quantification (C) and analysis of the same samples by shot-
gun lipidomics (D) deliver comparable results regarding absolute amounts of the major phospholipid classes in yeast. (E) Pearson correlation 
analysis comparing HPTLC with MS results. Additional relative data quantification in mol % is depicted in Fig. S1 and scatter plots visualising 
individual pairs for Pearson correlation are shown in Fig. S2. 
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3. & 4. Comparison of HPTLC-based lipidomic quantifica-
tion of major lipid classes to MS-based shotgun lipidomics   
We next wanted to quantify and compare the results ob-
tained by HPTLC-based lipidomics with MS-based shotgun 
lipidomic analyses of the exact same samples. The samples 
were sent to Lipotype, a company which commercially 
offers lipidomic analyses. The data obtained from lipotype 
were converted from molar concentrations into absolute 
mass concentrations according to our conversion table 

(accessible at Mendelay data) to allow for direct compari-
son with HPTLC results. The bulk graphical representations 
of both analyses deliver a similar overall picture for neutral 
(Fig. 3A, B) and phospholipid (Fig. 3C, D) quantities, which 
suggests good comparability of both methods for lipid 
analysis (see also note 3). Please note that a relative repre-
sentation of these data is given in the supplemental data 
(Fig. S1A-D). A Pearson correlation analysis of absolute 
data pairs attested highest correlation at the 6 h timepoint.  

FIGURE 4: Paired statistical analysis of individual lipid classes (absolute) for HPTLC-lipidomics vs. MS-assisted shotgun lipidomics reveals 
similarities and differences between both methods. Neutral lipids are compared in panels (A-C) and phospholipid comparisons are given in 
panels (D-I). Statistical analysis was performed using paired tests: TG, DG, SE, CL, PA, PC, PS and PI were analysed using mixed effects analy-
sis with Sidaks´s multiple comparisons test; PE was analysed using RM ANOVA with Holm-Sidak´s multiple comparisons test. Relative repre-
sentation in mol % is depicted in Figure S3. 
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The correlation analysis further suggests that comparability 
is most robust for PA (except for the 24 h timepoint, where 
PA was beyond detection limit with HPTLC), PI, PE, and DG 
at all tested time points and PC and PS at 6 h and 12 h time 
points (Fig. 3E, Fig. S2). An analysis of Pearson correlation 
using the relative datasets as shown in the supplemental 
data (Fig. S1E) suggests highest correlation for TG and DG 
at all tested time points, PE at 6 h and 24 h, CL at 12 h, PA 
at 6 h and 12 h and PS at 12 h. 

Pairwise statistical testing for significant difference be-
tween both measurements was assessed for individual lipid 
classes comparing the absolute values (Fig. 4 A-I) and rela-
tive values (Fig. S3 A-I). The absolute results for SE (Fig. 4A) 
and PS (Fig. 4H) do not differ significantly at any tested 
timepoints no matter which detection method was used 
(HPTLC or MS). Likewise, TG (Fig. 4B) and PC (Fig. 4G) re-
sults do not significantly differ at 12 h and 24 h time points. 
Absolute PE (Fig. 4D) comparisons are best at 6 h and 12 h 
showing no statistical differences between both methods. 
Statistical differences however were detected for TG at 6 h 
(Fig. 4B), DG at 6 h and 24 h (Fig. 4C), PE at 24 h (Fig. 4D), 
CL at all timepoints (Fig. 4E), PA at 6 h and 12 h, PC at 6 h 
and PI at all tested timepoints. We noted that DG quantifi-
cation delivered higher values by MS as compared to the 
HPTLC method, which is significant at 6 h and 24 h meas-
urements (Fig. 4C). This could be explained either due to 
limited sample degradation in HPTLC samples or a matter 
of working on the edge of detection sensitivity. Additional-
ly, we observed that scattering of individual data points is 
higher at earlier time points. This seems reasonable as 
during exponential growth small differences in growth can 
lead to substantial difference in lipid content, whereas 
arrival in stationary phase rather stabilises and compen-
sates for potential differences. 

In summary, our analysis suggests acceptable overall 
comparability between both methods for lipid analysis. 
However, with very stringent statistical testing of data 
pairs statistical difference can be detected for some lipid 
classes at critical time points. 

 
5. & 6. Validation of HPTLC-based lipidomic method by 
quantification of example yeast strains with described 
lipidomic changes 
The next step to fully validate the HPTLC-based lipidomics 
method was to measure and quantify total lipids of a set of 
yeast strains which have already been described to have 
significantly altered lipid profiles. We chose the dga1∆ 
lro1∆ are1∆ are2∆ (QKO) and the pah1∆ strain. The QKO 
has been used in several studies and completely lacks LDs, 
since neutral fat synthesis is completely abrogated when 
all four genes encoding acyltransferases are deleted [26, 36, 
62]. PAH1 on the other hand encodes the phosphatidate 
phosphatase called lipin [63]. The pah1∆ strain thus shows 
numerous changes in the lipid profile which we use as a 
reference to validate our data.  

Analysis of the QKO lipidome with the HPTLC method 
revealed the expected results, which are in line with previ-
ous descriptions of the knock out mutant (Fig. 5 and 6). We 
could confirm complete lack of the neutral lipids TG (Fig. 

FIGURE 5: Further validation of HPTLC-based lipidomic method 
by quantification of yeast strains with known lipidomic changes. 
(A) HPTLC plate showing neutral lipid separation of wildtype (wt), 
dga1∆ lro1∆ are1∆ are2∆ (QKO), and pah1∆ each in quadruple. (B, 
C) HPTLC plate showing phospholipid separation, derivatised using 
Primulin (B) visualising all lipids and ninhydrin (C), which visualizes 
PS and PE only. (D, E) Lipidomic quantification of neutral lipids (D) 
and phospholipid classes (E). 
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6A) and SE (Fig. 6B). For DG an increase was only observed 
as a non-significant trend (Fig. 6C), whereas free Erg was 
significantly increased (Fig. 6D). Since FA levels of the 
wildtype are at the detection limit (Fig. 2A, 5A, note 4), we 
only quantified FA for the QKO and pah1∆ mutants (Fig. 5D, 
6E). Similarly, DG-levels of pah1∆ were beyond detection 
limit and excluded from statistical analysis (Fig. 5D, 6C). 
Regarding the phospholipids in the QKO we detected a 
slight but significant reduction of PE (Fig. 6F) and PC (Fig. 
6I) whereas the decrease in PS was very strong and signifi-
cant (Fig. 6J). PA was below detection level in the QKO (Fig. 
6H), and a non-significant trend was observed for CL reduc-
tion (Fig. 6G). 

 

The pah1∆ strain has been reported to have reduced 
levels of DG, TG, and PS whereas PA, PI and SE should be 
increased [63]. We could confirm all of these changes by 
our HPTLC-measurements (Fig. 5 and 6). Additionally, we 
observed significant increase of Erg, PE and PC (Fig. 6), 
which showed varying quantities depending on the time of 
analysis (exponential vs. stationary phase) in the formerly 
published analyses [63]. 

In summary we observed that all major changes in the 
lipid profile of QKO and pah1∆ in S. cerevisiae can be de-
tected using HPTLC according to our here-described proto-
cols. This suggests that the method is adequate for scien-
tific lipid analysis in yeast especially when sample quantity 
is not a limiting factor. 

 

FIGURE 6: Statistical analysis of 
individual lipid classes comparing 
QKO and pah1∆ to wildtype. Neutral 
lipids are compared in panels (A-E) 
and phospholipid comparisons are 
given in panels (F-K). SE, TG, DG, CL, 
and PA were analysed using un-
paired T-test; PS and PI using ordi-
nary one-way-ANOVA; TG, SE, PC, PS, 
and PI using Kruskal-Wallis test and 
PC, Erg and PE using Brown-Forsythe 
and Welch ANOVA. 
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MATERIAL AND METHODS 
Laboratory Equipment 
Pyrex glass tubes (30x100mm & 18x100mm) 
Acid-washed glass beads (0.4 - 0.6 mm, VWR, LENZ05124005) 
HPTLC plates (Sigma/Merck 1.05641.0001) 
 
Automatic equipment (for optimised results and reproduci-
bility) 
Heidolph Multi Reax shaker 
Automatic TLC sample applicator (ATS 4, CAMAG, 022.7400)  
Automatic developing chamber (ADC 2, CAMAG, 022.8380) 
Derivatizer (CAMAG, 022.6000) 
Filter paper for chamber saturation (CAMAG, 022.8371) 
TLC plate heater (CAMAG, 022.3306) 
CAMAG TLC Visualizer 2 (022.9810) 
CAMAG TLC software visionCATS basic (028.0000) 
CAMAG visionCATS Visualizer Enhanced Evaluation Package 
(028.2020) 

 
Manual equipment (low-cost alternative) 
Filter paper (Whatman) 
Twin trough glass thin-layer chromatography (TLC) developing 
chambers (CAMAG) 

 
Reagents 
Acetic acid (Roth 3738.4), ROTIPURAN® 100 %, p.a. 
Acetone (Roth 9372.2), ROTIPURAN® ≥99,8 %, p.a., ACS, ISO 
Chloroform (Roth 4432.1), ROTISOLV® ≥99,8 %, UV/IR Grade, 
stabilised 
Diethylether (Roth 3942.6), ROTIPURAN® ≥99,5 %, p.a., stabi-
lised 
Ethanol (Roth P075.4), 96 %, Ph. Eur., extra pure 
Isopropanol (Sigma Aldrich 33539M), puriss. p.a., ACS reagent, 
reag. ISO, reag. Ph. Eur., ≥99.8% (GC) 
Methanol (Roth 4627.2), ROTIPURAN® ≥99,9 %, p.a., ACS, ISO 
n-hexane (Roth 7573.1), ROTISOLV® Pestilyse® plus ≥99 % 
n-heptane (Roth 7566.1), ROTISOLV® Pestilyse® plus ≥99 % 
Petroleum ether (Roth T170.1), ROTISOLV® Pestilyse® 
Phosphatidylcholine 34:1 (Avanti Polar Lipids 850457P) 
Phosphatidylethanolamine 34:1 (Avanti Polar Lipids 850757P) 
Phosphatidylserine 34:1 (Avanti Polar Lipids 840034P) 
L-α-phosphatidylinositol (Avanti Polar Lipids 840042P) 
Diacylglycerol (16:0-18:1; Avanti Polar Lipids 800815O) 

L--phosphatidic acid from chicken egg, mixture of fatty acids 
(16:0 (34.2 %), 16:1 (1 %), 18:0 (11.5 %), 18:1 (31.5 %), 18:2 
(18.5 %), 20:4 (2.7 %), 22:6 (0.7 %) ; (Avanti Polar Lipids 
840101P) 
Cholesteryloleate (Avanti Polar Lipids 700269P) 
Cardiolipin (18 :1) (Avanti Polar Lipids 710335P) 
Triolein (Avanti Polar Lipids 870110O) 
Ergosterol (Acros Organics 117810050, see note 1)  
Oleic acid (Sigma O1008) 
Cholesterylformate (Sigma, S448532) 
Primuline (Sigma 206865) 
Ninhydrine spray reagent (Sigma N1286) 
 
Yeast strains and growth conditions 
All experiments were carried out in BY4741 (Mata his3Δ1; 
leu2Δ0; met15Δ0; ura3Δ0) obtained from Euroscarf. The quad-
ruple knock out mutant (QKO, BY4741), which was generated 
and described previously [26, 62], was genetically manipulated 
as follows: ycr048w∆::KanMX4 ynr019w∆::KanMX4 

yor245c∆::KanMX4 ynr008w∆::KanMX4. The pah1∆ strain 
(also in the genetic background of BY4741) was a kind gift 
from Heimo Wolinski. 

All experiments were carried out in synthetic complete 
medium with 2 % D-(+)glucose (Roth) with additional myo-
inositol (SCD+Ino). SCD+Ino medium contains 0.17% yeast 
nitrogen base (BD Difco, 233520), 0.5% (NH4)2SO4 (Roth, 
9218.1), 2% D-(+)glucose (Roth), 8 mg/L myo-inositol and ami-
no acids, adenine and uracil according to Table 1. 

All media were prepared with ultrapure water (MilliQ) and 
subsequently autoclaved (20 min, 121°C, 110 kPa). Amino acid 
mixture (including uracil and adenine) and glucose were steri-
lised separately as 10× stocks and added after autoclaving. 
Myo-inositol (Sigma, I5125) was added from a sterile filtered 
10,000 x stock (80 g/L) after autoclaving. All yeast cultures 
were inoculated from a stationary overnight culture to an 
OD600 = 0.1 and then grown at 30°C and 145 rpm shaking for 6, 
12 or 24 hours. 

 
Total yeast lipid extraction  
In total, 80 OD600 units were harvested at indicated time 
points after inoculation. Total lipids were extracted with chlo-
roform/methanol (CHCl3/MeOH) 2:1 (v/v) according to Folch 
et al. [64] and essentially as described before [65]. Samples 
were transferred into thick-walled glass tubes with screw caps 
(Pyrex 30 x 100 mm) and combined with 1 ml acid washed 
glass beads, 5 ml CHCl3/MeOH (2:1; v/v) and 125 µg cholester-
ylformate (CF) (Sigma, S448532) as internal standard. Subse-
quently cells were lysed by shaking in a Heidolph Multi Reax 
shaker at an intensity of 8 for 30 minutes. 1 ml of dH2O was 
added to each sample and samples were shaken for 10 more 

TABLE 1. Amino acids, adenine and uracil. 

No. Component 
Final conc. 

(mg/l) 
Distributor Product no. 

1 L-alanine 30 SERVA 11482.02 

2 L-arginine base 30 SERVA 13909.02 

3 
L-asparagine-
monohydrate 

30 SERVA 14110.02 

4 L-aspartic acid 30 SERVA 14180.02 

5 L-cystine 30 SERVA 17880.02 

6 L-glutamine 30 SERVA 22942.02 

7 L-glutamic acid 30 SERVA 23000.01 

8 Glycine 30 SERVA 23390.02 

9 
histidine-Hcl 
monohydrate 

80 SERVA 24842.02 

10 L-isoleucine 30 SERVA 26540.03 

11 L-leucine 200 SERVA 27690.02 

12 
L-lysine hydro-
chloride 

30 Roth 1700.2 

13 L-methionine 30 SERVA 28821.02 

14 L-phenylalanine 30 SERVA 32191.02 

15 L-proline 30 SERVA 33582.03 

16 L-serine 30 SERVA 34962.03 

17 L-threonine 30 SERVA 36382.03 

18 L-tryptophan 30 SERVA 37422.03 

19 L-tyrosine 30 SERVA 37540.03 

20 L-valine 30 SERVA 38064.02 

21 Uracil 320 Roth 7288.3 

22 Adenine 30 SERVA 10739.02 
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minutes. Subsequently, samples were centrifuged at 2500 rpm 
for 5 minutes and the aqueous phase was discarded. 2 ml of 
artificial upper phase consisting of methanol/H2O/chloroform 
(48/47/3; v/v/v) was added to the samples and samples were 
vortex-mixed. The washed samples were again centrifuged at 
2500 rpm for 5 minutes to achieve phase separation. The 
aqueous upper phase was discarded and the organic phase at 
the bottom was collected using a Pasteur pipette. The entire 
organic phase was harvested avoiding any contamination of 
watery phase. The lipid extracts were transferred to fresh 
pyrex tubes (18 x 100 mm) and the solvent was evaporated 
completely under a stream of nitrogen. The dried lipid sam-
ples were dissolved in 1 ml chloroform/methanol (2:1; v/v), 
transferred to 1.5 ml glass vials with caps and stored at -20°C. 
 
Quantification by high-performance thin-layer chromatog-
raphy 
For neutral lipid and phospholipid separation a total of 20 µL 
of lipid extracts was applied on HPTLC silica gel 60 plates, 20 x 
10 cm (Merck, 1.05641.001) using a CAMAG automatic TLC 
sampler (ATS4). Lipid separation was performed using a 
CAMAG automatic developing chamber (ADC2). Neutral lipids 
were separated with n-hexane, n-heptane, diethylether, acetic 
acid (63/18.5/18.5/1; v/v/v/v) as mobile phase [58], whereas 
phospholipid separation was carried out using 
CHCl3/MeOH/water (32.5:12.5:2; v/v/v) mixture as mobile 
phase [49, 53, 54]. HPTLC plates were derivatized with 0.01% 
primuline (dissolved in 80% acetone) applied in a CAMAG 
derivatizer followed by mild heating to 40°C for 2 minutes on a 
CAMAG TLC plate heater 3. Developed HPTLC plates were 
imaged using a CAMAG TLC visualizer 2 with VisionCATS soft-
ware. Since peak separation of PI and PS was not ideal in all 
samples, we conducted an additional derivatisation step with 
ninhydrin spray reagent (Sigma Aldrich, N1286), which only 
stains phospholipids containing free amino groups and thus 
allows quantification of PS without PI. HPTLC bands were pro-
cessed into chromatograms and quantified by polynomial 
regression of standard curves calculated from the applied 
standards. For phospholipids the standard contained l-α-
phosphatidylinositol (840044P), phosphatidylcholine (16:0-
18:1; 850457P), phosphatidylethanolamine (16:0-18:1; 
850757P), phosphatidylserine (18:1-18:1; 840034P), cardi-
olipin (18:1-18:1; 710335P), phosphatidic acid (16:0 (34.2%), 
16:1 (1%), 18:0 (11.5%), 18:1 (31.5%), 18:2 (18.5%), 20:4 
(2.7%), 22:6 (0.7%); 840101P) each at 500 ng/µl all purchased 
individually from Sigma Aldrich. The PL-standard was dissolved 
in chloroform/methanol (2/1). As a neutral lipid standard, we 
used a custom-made neutral lipid standard consisting of a mix 
of cholesteryl-oleate (700269P), cholesterylformate (S448532), 
triolein (870110O), diacylglycerol (16:0-18:1); 800815O)), oleic 
acid (O1008) all purchased individually from Sigma Aldrich, 
and ergosterol from Thermofisher Scientific (117810050) each 
at 500 ng/µl. The NL-standard was dissolved in heptane/ iso-
proanol (1/1). Both standards were applied at increasing 
quantities for phospholipids from 0.25 µg to 10 µg; for neutral 
lipids 0.5-10 µg absolute mass.  

 
Lipid quantification by shotgun lipidomics 
Shotgun lipidomics were performed by the company Lipotype 
on a commercial basis following standard protocols [2]. Basic 
analysis of yeast cells, covering nine of the most important 
lipid classes was performed, which included PA, PC, PE, PG, PI, 

PS, DG, TG, and EE. Additionally, CL quantification was select-
ed. The original report is accessible at Mendeley data (doi: 
10.17632/gf9z9ky3h5.1). 

 
Statistical analysis 
Tests for statistical significance were performed using 
GraphPad Prism 8.4.3. The obtained data from HPTLC and MS 
analyses were processed as paired data, since they were gen-
erated from exactly the same samples. Normal distribution of 
datasets was assessed using Shapiro-Wilk tests. In case of 
negative Shapiro-Wilk test a ROUT analysis with Q=10% to 
identify likely outliers was conducted and cleaned datasets 
were used for further statistical analysis. Repeated measure 
(RM) one-way ANOVA with Sidak´s multiple comparisons test 
was conducted if no missing values were present; for datasets 
containing missing values a mixed effects analysis with Holm-
Sidak´s multiple comparisons test was performed. All original 
GraphPad Prism files are accessible at Mendelay data.  

Pearson correlation analysis of lipid species by HPTLC and 
MS measurements was conducted using R (version 4.3.2.; 
Table 2). Data was imported from MS Excel via the readxl 
package [66], cleaned and transformed using the packages 
dplyr [67], stringr [68] and tidyr [69] from the tidyverse collec-
tion. Correlation calculations were performed with the rstatix 
package [70]. Packages ggplot2 [71], RColorBrewer [72] and 
pheatmap [73] were used for plotting. 
 
Notes 
1) The analysis of Erg could possibly be improved using an 
alternative source as ergosterol standard. It seems like there is 
substantial impurity in the Erg which was used here, which has 
an impact on the precise estimation of Erg levels.  

2) Inositol is not sufficient in standard SC medium [74], 
which is why it was additionally provided as a supplement. 

3) Erg quantification was not included in the MS-approach 
by lipotype, which is why a comparison for Erg is not applica-
ble. MS-based quantification of Erg and sterolesters is general-
ly difficult because stable-isotope-labelled compounds are not 
available.  

4) The analysis of FA in wildtype which is at detection limit 
could be overcome by increasing total lipid amounts for appli-
cation. This can be achieved easily by evaporation of total lipid 
extracts under a stream of nitrogen and resolubilisation in less 
solvent. 

 

TABLE 2. R packages used in this study. 

Package Version 

dplyr [67] 1.1.4 

ggplot2 [71] 3.3.4 

pheatmap [73] 1.0.12 

RColorBrewer [72] 1.1-3 

readxl [66] 1.4.3 

rstatix [70] 0.7.2 

stringr [68] 1.5.1 

tidyr [69] 1.3.0 
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