The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit

Yiannis Pyrris¹, Georgia F. Papadaki^{1,#}, Emmanuel Mikros² and

George Diallinas^{1,3,*}

¹Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15784, Greece.

²Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15771, Greece.

³Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013, Greece.

Contact information: George Diallinas, diallina@biol.uoa.gr

Running title: Role of last two transmembrane helices in NCS1 transporter

Supplementary Material

Supplementary figure S1. Trafficking-deficient, GFP-tagged, mutant FurE versions decorate characteristic perinuclear ER rings as well as cortical ER. Epifluorescence microscopy images of strains expressing GFP-tagged FurE versions after nuclear staining using the DAPI dye. The images from the GFP and DAPI channels as well as their merge are presented. For details see materials and methods.

Supplementary figure S2. Most mutations in TMS11 and 12 do not severely affect the quantity of FurE in the PM. The boxplot represents the PM/Cytosol GFP fluorescence intensity of strains expressing different GFP-tagged FurE versions. The quantification was made using the ICY imaging software (see methods). The results correspond to 10 technical and 3 biological replicates.

Supplementary figure S3. Y484 participates in an aromatic network that mediates interactions with annular lipids. Image was produced using PyMOL 2.5. For details on MD simulations see methods.

Supplementary figure S4. W473 directly interact with lipid tails in the middle of the bilayer.

Image was produced using PyMOL 2.5. For details on MD simulations see methods.

Supplementary figure S5. ER-retained FurE mutants do not impair the function of multiple other nitrogen compound transporters. Growth tests of control strains and strains expressing combinations of ER-retained mutant FurE versions and wild type FurE transporter. Growth tests were performed on MM supplemented with ammonium (NH₄), nitrate (NO₃), uric acid (UA), arginine (ARG) or proline (PRO) as nitrogen sources. The ER-retained mutants lead reduced transport capacity for uric acid (FurE substrate) and not for the other compounds.

Primer name	Oligonucleotide sequence		
FurE d466-468 F	GCGTGCCGAAGGGAGCGGCGGCCGCGTACAGCTGCAGTTGGTTG		
FurE d466-468 R	CCAACCAACTGCAGCTGTACGCGGCCGCCGCTCCCTTCGGCACGC		
FurE d469-471 F	GAAGGGAGCGAATTACTTGGCGGCCGCCAGTTGGTTGGTGAGCATTG		
FurE d469-471 R	CAATGCTCACCAACCAACTGGCGGCCGCCAAGTAATTCGCTCCCTTC		
FurE d472-474 F	CGAATTACTTGTACAGCTGCGCGGCGGCGGGGGGGGGGG		
FurE d472-474 R	CAGAAACAACAATGCTCACCGCGGCCGCGCAGCTGTACAAGTAATTCG		
FurE d475-477 F	GTACAGCTGCAGTTGGTTGGCGGCCGCTGTTGTTTCTGGGATGGTC		
FurE d475-477 R	GACCATCCCAGAAACAACAGCGGCCGCCAACCAACTGCAGCTGTAC		
FurE d478-480 F	CAGTTGGTTGGTGAGCATTGCGGCCGCTGGGATGGTCTATTACTTG		
FurE d478-480 R	CAAGTAATAGACCATCCCAGCGGCCGCAATGCTCACCAACCA		
FurE d481-483 F	GGTGAGCATTGTTGTTGTTGCGGCCGCCTATTACTTGCTGTTTTTTG		
FurE d481-483 R	CAAAAAACAGCAAGTAATAGGCGGCCGCAGAAACAACAATGCTCACC		
FurE d484-486 F	GTTGTTTCTGGGATGGTCGCGGCCGCGCGCTGTTTTTTGTCTGGCCG		
FurE d484-486 R	CGGCCAGACAAAAAACAGCGCGGCCGCGACCATCCCAGAAACAAC		
FurE d487-489 F	CTGGGATGGTCTATTACTTGGCGGCCGCTGTCTGGCCGTTTGATG		
FurE d487-489 R	CATCAAACGGCCAGACAGCGGCCGCCAAGTAATAGACCATCCCAG		
FurE d490-492 F	CTATTACTTGCTGTTTTTTGCGGCCGCGTTTGATGTTGAAGAGAAAG		
FurE d490-492 R	CTTTCTCTTCAACATCAAACGCGGCCGCAAAAAACAGCAAGTAATAG		
FurE d493-495 F	GCTGTTTTTTGTCTGGCCGGCCGCCGCTGAAGAGAAAGTCATTGTGC		
FurE d493-495 R	GCACAATGACTTTCTCTTCAGCGGCGGCCGGCCAGACAAAAAACAGC		
FurE d496-498 F	CTGGCCGTTTGATGTTGCCGCTGCAGTCATTGTGCTTGAGGG		
FurE d496-498 R	CCCTCAAGCACAATGACTGCAGCGGCAACATCAAACGGCCAG		
FurE d438-440 F	GGTGTGAATATACGCGCCGCGGCCGCGTTTGTCTGCGGCATCG		
FurE d438-440 R	CGATGCCGCAGACAAACGCGGCCGCGCGCGCGCGTATATTCACACC		
FurE d441-443 F	GAATATACGCGCCATGATCTCGGCGGCCGCCGGCATCGCGCCGAATC		
FurE d441-443 R	GATTCGGCGCGATGCCGGCGGCCGCCGAGATCATGGCGCGTATATTC		
FurE d444-447 F	CATGATCTCGTTTGTCTGCGCGGCGGCGGCGGAATCTGCCTGGTTTG		
FurE d444-447 R	CAAACCAGGCAGATTCGCCGCGGCCGCGCAGACAAACGAGATCATG		
FurE d448-450 F	CTGCGGCATCGCGCCGGCGGCCGCTGGTTTGGCTGCGGTGAC		
FurE d448-450 R	GTCACCGCAGCCAAACCAGCGGCCGCCGGCGGCGATGCCGCAG		
FurE W473A F	GAATTACTTGTACAGCTGCAGTGCGTTGGTGAGCATTGTTGTTTC		
FurE W473A R	GAAACAACAATGCTCACCAACGCACTGCAGCTGTACAAGTAATTC		
FurE W473F F	GAATTACTTGTACAGCTGCAGTTTCTTGGTGAGCATTGTTGTTTCTG		
FurE W473F R	CAGAAACAACAATGCTCACCAAGAAACTGCAGCTGTACAAGTAATTC		
FurE W473Y F	GAATTACTTGTACAGCTGCAGTTACTTGGTGAGCATTGTTGTTTCTG		
FurE-W473Y R	CAGAAACAACAATGCTCACCAAGTAACTGCAGCTGTACAAGTAATTC		
FurE L91A F	CGTTTGTATTCCGGCTATGGCCGATGGGTATGTATTGCCC		
FurE-L91A R	GGGCAATACATACCCATCGGCCATAGCCGGAATACAAACG		
FurE L91F F	CGTTTGTATTCCGGCTATGTTTGATGGGTATGTATTGCCC		
FurE L91F R	GGGCAATACATACCCATCAAACATAGCCGGAATACAAACG		
FurE V404A F	GTGCTATTGCTGGGGTGATTGCGGTTGATTATTGGGTTTGTCGG		
FurE V404A R	CCGACAAAACCCAATAATCAACCGCAATCACCCCAGCAATAGCAC		
FurE Y484M F	CATTGTTGTTTCTGGGATGGTCATGTACTTGCTGTTTTTTGTC		
FurE Y484M R	GACAAAAAACAGCAAGTACATGACCATCCCAGAAACAACAATG		
FurE Y484F F	CATTGTTGTTTCTGGGATGGTCTTTTACTTGCTGTTTTTTGTC		

FurE Y484F R	GACAAAAAACAGCAAGTAAAAGACCATCCCAGAAACAACAATG	
FurE Y484S F	CATTGTTGTTTCTGGGATGGTCTCTTACTTGCTGTTTTTTGTC	
FurE Y484S R	GACAAAAAACAGCAAGTAAGAGACCATCCCAGAAACAACAATG	
FurE d30-32 F	CAAAGACCTCGACCCGGCCGCCGACTCGCCCAAACGCAC	
FurE d30-32 R	GTGCGTTTGGGCGAGTCGGCGGCGGCCGGGCCGGGTCGAGGTCTTTG	
FurE D406A F	GCTGGGGTGATTGTGGTTGCTTATTGGGTTTGTCGGGGGGC	
FurE D406A R	GCCCCCGACAAACCCAATAAGCAACCACAATCACCCCAGC	
FurE F111A F	GTCTACACTCGAGCCAGCGCCGGTATGAAGGGGAGCTAC	
FurE F111A R	GTAGCTCCCCTTCATACCGGCGCTGGCTCGAGTGTAGAC	
FurE R123A F	GCTACTTCGCCGTCTTCGTTGCAGGGATTGTCGCTATTATCTGG	
FurE R123A R	CCAGATAATAGCGACAATCCCTGCAACGAAGACGGCGAAGTAGC	
FurE 11-12 NS speI F	GCGACTAGTATGGGTACGCACTACTTCACCAAAGG	
FurE NotI R	GCGGCGGCCGCTGCAGAGACAGCCTCCTTC	
FurE SpeI F	GCGACTAGTATGGGACTACGAGAAAGACTC	
FurE 1-10 NS NotI R	CGCGCGGCCGCATGAGCTTCGTACAGTGAGCGC	
FurE 1-10 NotI R	CGCGCGGCCGCCTAATGAGCTTCGTACAGTGAGCGC	
FurE-F111Y-F	GTCTACACTCGAGCCAGCTACGGTATGAAGGGGAGCTAC	
FurE-F111Y-R	GTAGCTCCCCTTCATACCGTAGCTGGCTCGAGTGTAGAC	
FurE-D406E-F	GCTGGGGTGATTGTGGTTGAATATTGGGTTTGTCGGGGGGCG	
FurE-D406E-R	CGCCCCCGACAAACCCAATATTCAACCACAATCACCCCAGC	

Supplementary Table S6. Primers used in this study. Primers for site directed mutagenesis contain the mutation on their names (e.g. Y484F). Primers used for constructing the truncated FurE versions (e.g., 1-10) contain restriction enzyme extensions as suggested by their names. Also the term "NS" stands for non-stop meaning that the stop codon has been omitted to enable GFP-fusions. The terms "F" and "R" mean forward and reverse. All primers are written as 5'-3'.

Protein	Uniprot accession number	Organism	Major substrate
FurE	Q5ATG4	Aspergillus nidulans	uric acid, allantoin, uracil
FurD	A6N844	Aspergillus nidulans	uracil, uric acid
Fur4	P05316	Saccharomyces cerevisiae	uracil
Dal4	Q04895	Saccharomyces cerevisiae	allantoin
Thi7	Q05998	Saccharomyces cerevisiae	thiamine
Nrt1	Q08485	Saccharomyces cerevisiae	nicotinamide riboside, thiamine
PLUTO	Q9LZD0	Arabidopsis thaliana	nucleobases
FurA	Q5BFM0	Aspergillus nidulans	allantoin
Mhp1	D6R8X8	Microbacterium liquefaciens	5-aryl- substituted hydantoins
FcyB	C8V329	Aspergillus nidulans	Adenine, hypoxanthine, cytosine, guanine
Fcy2	P17064	Saccharomyces cerevisiae	Adenine, hypoxanthine
Tpn1	P53099	Saccharomyces cerevisiae	pyridoxine

Supplementary Table S7. Uniprot accession numbers, taxonomy and major substrates of transporters aligned in Figure 1.