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ABSTRACT The role of model organisms such as yeasts in life science research is
crucial. Although the baker’s yeast (Saccharomyces cerevisiae) is themost popular
model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces)
to life science is also indisputable. Since both types of yeasts share several
thousands of common orthologous genes with humans, they provide a simple
research platform to investigate many fundamental molecular mechanisms and
functions, thereby contributing to the understanding of the background of human
diseases. In this review, we would like to highlight the many advantages of fission
yeasts over budding yeasts. The usefulness of fission yeasts in virus research is
shownas an example, presenting themost important research results related to the
Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential
role of fission yeasts in the study of prion biology is also discussed. Furthermore,
we are keen to promote the uprisingmodel yeast Schizosaccharomyces japonicus,
which is a dimorphic species in the fission yeast genus. We propose the hyphal
growth of S. japonicus as an unusual opportunity as a model to study the
invadopodia of human cancer cells since the two seemingly different cell types
can be compared along fundamental features. Here we also collect the latest
laboratory protocols and bioinformatics tools for the fission yeasts to highlight the
many possibilities available to the research community. In addition, we present
several limiting factors that everyone should be aware of when working with yeast
models.
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INTRODUCTION

The use of model organisms to understand essential processes
is a well-known strategy in life science research. If we
take a look at the publication statistics in repositories like
PubMed, we can see that there are a substantial number
of studies using different model organisms. For example,
a quick search in the aforementioned repository resulted
in (accessed on 2023.10.16) 142,277 matches for the
keywords ‘Saccharomyces cerevisiae’, 429,254 for ‘Escherichia
coli’, 1,945,515 for ‘Mus musculus’, 92,105 for ‘Arabidopsis
thaliana’, 62,541 for ‘Drosophila melanogaster’, 36,775 for
‘Caenorhabditis elegans’ just a few to mention. This leads
us to conclude that the contribution of model organisms to our

understanding of basic biological processes is indispensable.
The yeasts have a special place among model organisms

because these tiny fungal cells have provided many useful
models for different studies. For example, Candida albicans
and Cryptococcus neoformans emerged as models for
studying fungal pathogenesis, while S. cerevisiae and
Schizosaccharomyces pombe are useful models for studying
the eukaryotic cell cycle and other countless fundamental
biological processes. Accordingly, thousands of research
articles related to these species are published every year
(Fig. 1). Although S. cerevisiae is the most popular yeast
model, we would like to concentrate on the fission yeasts
(Schizosaccharomyces) as models in this particular review. The
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fission yeasts are widely established models of the eukaryotic
cell cycle, cell sizemaintenance, cellular aging, geneexpression
andepigenetics, autophagy, andapoptoticprocesses, just a few
to mention.

To our best knowledge, the fission yeast genus consists of
six species to date: S. japonicus, S. pombe, S. octosporus, S.
cryophilus, and the recently described species S. osmophilus
and S. lindneri, and other variants [1–6]. S. japonicus has
two main varieties: var. japonicus and var. versatilis, which
have recently been proposed to be considered as two different
lineages [7]. In our opinion, the two most divergent branches
of the genus (S. japonicus and S. pombe) have tremendous
potential (not just) as model organisms.

FISSIONYEASTS? FORWHAT?

Someone may ask the legitimate question: why do we need
fission yeasts when we already have well-established and
widely used yeastmodels such as S. cerevisiae andC. albicans?
What can fission yeasts provide that cannot be provided by
the aforementioned ones? Most importantly, could a fission
yeast be a good (or better) alternative for studying human
diseases than budding yeasts? We try to provide answers to
these questions while revealing some fundamental differences
among the yeast models (Table 1).

Fundamental considerations

At first, we should take a close look at the phylogenies of
the fission yeasts. Since they are a basal lineage of the
Ascomycota (subdivision Taphrinomycotina), they have a
closer phylogenetic relationship with the Metazoa lineage [10,
44–47]. Besides, the fission yeast genus has remarkably
conservedcommongenecontent, which ismaintained through
a relatively long divergence time [10, 48, 49]. Maybe that
is one of the reasons for them to preserve many common
features with the higher eukaryotes. The fission yeasts are
already considered “micro-mammalian”model organisms since
they share various fundamental features with the metazoan
species, such as chromosomal structure and metabolism,
relatively large chromosomes and centromeres, low-complexity
replication origins, epigenetic mechanisms for regulation
of gene expression and centromere maintenance, G2/M
control of cell cycle, cytokinesis, mitosis and meiosis, DNA
repair and recombination, the mitochondrial translation
code, spliceosome components with functional alternative
splicing, post-translational modifications, and RNA interference
(RNAi) [10, 11, 50–53].

Chromosomes, centromeres and heterochromatin

The haplontic chromosomal state facilitates genetic
modifications and makes the phenotypic association of the
mutation more comprehensible. Although both S. cerevisiae
and S. pombe are able to maintain haplontic and diplontic
chromosomal states as well, in contrast to S. cerevisiae, the
fission yeasts preferred the haplontic state. While it seems
to be a tendency that the lab strains of S. cerevisiae drive
towards diploidization after a few generations, the fission
yeasts naturally maintain their haplontic form even in the
wild [20, 21, 53–57]. Despite possessing similar genome
sizes, S. cerevisiae has many small chromosomes with short

(125 bp) point-like centromeres, while the fission yeasts
have few but long chromosomes with large centromeres
containing repetitive sequences that are more similar to
mammalian centromeres [23, 58]. Nevertheless, the larger
chromosome sizes allow for more efficient microscopic
examination. Moreover, the fission yeast genome contains
regions of centromeric heterochromatin, which is maintained
by H3K9 methylation of nucleosomes and RNAi, unlike the
budding yeasts that do not have the necessary molecular
toolkit for either one [10, 26, 58–60]. Although both S.
pombe and S. cerevisiae have silent chromatin at telomeres,
at the mating-type loci, and rDNA regions, only S. pombe
has silent chromatin at centromeres [40, 61]. In humans, the
methylenetetrahydrofolate reductase (MTHFR) is a key enzyme
in the folate metabolic pathway, loss of function mutations
of which are associated with several human conditions, such
as cancer, congenital heart disease, and maybe Down and
Turner syndrome, too [62–66]. Lim and co-workers examined
the fission yeast equivalent of MTHFR, the Met11, and they
revealed that it functions to maintain centromeric integrity to
ensureprecisechromosomesegregation inmitosis andmeiosis,
as the∆met11 null mutant showed increased missegregation
of chromosomes in mitosis and increased transcription from
centromeric heterochromatic regions [67]. They also observed
heterochromatic derepression at subtelomeric and rDNA
regions, accompanied by a disruption of H3K9me2 and HP1
protein (Swi6) at all these loci [67]. The human nucleosome
remodelinganddeacetylase (NuRD)complexessustain specific
gene expression programs required for lineage specification, so
they have an important role in development and aging [68, 69].
In many cases of cancer, the subunits of the NuRD complex
contain mutations [70] and some of the mutations can
also have detrimental effects on neurological and cognitive
development [71]. To understand the fundamental function
and operation of this heterogenic complex, examination
of the fission yeast counterpart Snf2/Hdac Repressive
Complex (SHREC) and its interacting partners can be a
good alternative [72–75]. Wei and co-workers studied the
TOR signaling pathway, and they showed that this cascade
targets a conserved nuclear RNA elimination network to
dynamically control gene expression by promoting RNA decay
and facultative heterochromatin assembly [76]. Since RNA
elimination factors are involved in proper meiotic progression
during oogenesis and/or spermatogenesis in mammals, their
result may shed light on the epigenetic reprogramming during
development [76–79]. Thus, the fission yeasts proved to be a
very powerful model for the investigation of heterochromatin
assembly and epigenetic gene silencing [53]. Surprisingly,
unlike higher eukaryotes, and many other fungal species,
neither S. pombe nor S. cerevisiae have DNA methylation
processes [40, 41]. However, the heterologous expression
of a murine DNA methyltransferase in S. cerevisiae resulted in
methylated DNA at specific sites [80].

Telomeremaintenance

All eukaryotic organisms have precisely defined regions called
telomeres at both ends of their chromosomes. Telomere
malfunction can cause several problems, from genome
rearrangements to several diseases like premature aging,
dyskeratosis congenita, and cancer amongst many other
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FiGURE 1• Number of published papers at the PubMed repository from2020 to 2023. S. cerevisiae is for the baker’s yeast Saccharomyces cerevisiae,
andC. albicans stands for the opportunistic human pathogenCandida albicans. C. neoformans represents themedically important speciesCryptococcus
neoformans, and S. pombe is for the fission yeast model Schizosaccharomyces pombe.

diseases [81, 82]. One of the protein complexes, the
heterotrimeric CST complex plays a key role in the regulation of
telomereextension,whichcanbeexamined inboth thebudding
and the fission yeast systems [83]. The other complex, which
contains up to six different proteins, the shelterin-complex has a
crucial role in the maintenance of telomeres, as it is responsible
for telomere protection and telomerase regulation [83–85].
Strikingly, S. pombe has a shelterin-like telomere complex,
which lacks in S. cerevisiae [83, 84]. Although the fission
yeast shelterin-like complex has “only” three obvious protein
orthologues with the vertebrates, the overall structure seems to
be quite similar [83, 84, 86–89]. Thus, fundamental processes
can be investigated in the fission yeasts also in the case of
shelterin function [90–92]. As an example, Irie and co-workers
observed in S. pombe that simultaneous inactivation of the
shelterin complex subunits Taz1 (TERF1 in humans) and Rap1
(TERF2IP in humans) enables a substantially higher number of
gross chromosomal rearrangements per cell division, not just
in the telomeric regions but also in the whole genome [93].
This is also remarkable because extensive chromosomal
rearrangements have been reported in many cancers with
mutations in the human shelterin complex [81, 94].

Introns and splicing

Since the fission yeasts have thousands of introns in their
genes compared to the few hundred introns of S. cerevisiae,
and have degenerate splice site sequences and exonic
splicing enhancers, the former species is again a better
choice for investigating maturation of mRNA and misregulated
splicing [28, 53]. Although spliceosome components are
available in fission yeasts, functional alternative splicing (AS)
has been debated because of the low amount of unequivocal
evidence. Montañés and co-workers provided exact proof
for functional AS and they showed that it is more prevalent

in S. pombe than it was previously thought [29]. They have
identified 332 alternative isoforms affecting 262 coding genes,
97 of which occur with frequencies >20%. The overwhelming
majority of the events (~80%) were intron retention, besides
intron inclusion, the use of alternative splicing sites, and
exon skipping. According to Zheng and co-workers, the
phenomenon of intron retention is one of the least understood
formsof alternative splicing in the humangenome, even though
it can be associated with serious diseases, such as Alzheimer’s
disease and cancer [95].

Protein interactions

Thanks to modern sequencing techniques, we were able to
identify thousands of mutations associated with diseases and
disorders in humans. However, it is still a serious problem to
filter out the noise and find the true causes of the observed
phenotypes. Moreover, the International RareDiseaseResearch
Consortium (IRDiRC) also acknowledged that different model
organismsareaneffectiveexperimental system for investigating
the impact of gene variants on protein activity, determining
their biological function, and identifyingpotential therapies [96].
Thus, yeasts as a system seem to be good candidates for this
task too [97–99]. Toestablishbinary protein-protein interactions
(PPI) and to find out which mutation causes loss of function or
reduced functionality, the yeast two-hybrid (Y2H) system is a
well-establishedmethod [100–102]. For example, aSARS-CoV2
– human protein interactome was examined in a recent study
with the combined usage of Y2H andmass spectrometry [103].
Yeasts can also be used for heterologous expression of other
eukaryotic proteins, as well as for studying the impact of the
foreign protein on the yeast transcriptome and proteome or
the effect of different drugs on the proteins to be tested [104–
107]. However, these tasks are easier when the interactome
of the host is more similar to the tested one. Vo and co-
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TABLE 1• Fundamental differences of yeast models.

Genome stats/
Biological features

C. albicans S. cerevisiae S. pombe S. japonicus

Genome size (Mb) ~ 14.28
(SC5314)

~ 12.24
(S288c)

~ 12.59
(L972)

~ 16.6-18.12
(ATCC10660)

Chromosome number
(haploid set)

8 16 3 3

Chromosome sizes (Mb) 0.95-3.19 0.23-1.55 3.5-5.7 ~ 3.8-5.75
Coding gene number 6030 5850 5134 4942
Common orthologues
with humans

~ 3400 ~ 3427 ~ 3422 ~ 3316

Disease-associated
transcripts

YTBD* ~ 1000 1521 YTBD*

Genetic code CTG Standard Standard Standard
Whole Genome
Duplication

pre post pre pre

Preferred chromosomal
state

2n 2n 1n 1n

Centromere sizes 3-4.5 kb 125 bp 35-110 kb 610-738 kb
Centromere type Unique DNA sequence,

without repetitive
elements

Small, point-like Large, repetitive
sequences

Large, repetitive
sequences and
transposons

RNAi components Yes No Yes Yes
RNAi-mediated splicing No No Yes Yes
Percent proportion of
introns

4-6% 2-6% >50% >50%

Spliceosome
components

Yes Reduced Yes Yes

Alternative splicing Obscure Obscure Frequent YTBD*
Generation time (hours) 1.7-3.6 1.25-2.0 2.0-3.0 1.0-1.5
Working time of genetic
cross (days)

Not applicable 7 4 2.5

Pathogenicity Yes Can be No known cases No known
cases

Hyphae production Yes Pseudo No** Yes
Cell division Budding Budding Fission Fission
Mitosis Closed Closed Closed Semi-open
DNAmethylation Yes No No YTBD*
H3K9methylation No No Yes Yes

‘Genome size’ ref.: [8, 9]. ‘Chromosome number’ ref.: [10–13]. ‘Chromosome sizes’ ref.: [9, 11–13]. ‘Coding gene number’ ref.: [8, 14, 15].
‘Common orthologues with humans’ ref.: [14–16]. ‘Disease associated transcripts’ ref.: [14, 17]. ‘Genetic code’ ref.: [18]. ‘Whole Genome
Duplication’ ref.: [19]. ‘Preferredchromosomal state’ ref.: [10, 20–22]. ‘Centromere sizes’ and ‘Centromere type’ ref.: [9, 23–25]. ‘RNAi components’
and ‘RNAi mediated silencing’ ref.: [10, 26, 27]. ‘Percent proportion of introns’ and ‘Spliceosome components’ and ‘Alternative splicing’
ref.: [10, 28–31]. ‘Generation time’ ref.: [20, 32–34]. ‘Working time of genetic cross’ ref.: [32, 35]. ‘Pathogenicity’ ref.: [36, 37]. ‘Mitosis’ ref.: [38, 39].
‘DNAmethylation’ ref.: [40–42]. ‘H3K9methylation’ ref.: [10, 26, 43]. * YTBD – Yet to be determined. ** Under standard circumstances, S. pombe
does not form hyphae.

workers created a proteome-wide binary interaction network
for S. pombe, and they compared the result with previous data
concerning the S. cerevisiae and human interactomes [108–
111]. Interestingly, they found that only ~40% of S. pombe
interactionsareconserved inS.cerevisiae, but~65%ofS.pombe
interactions are conserved in humans despite the overall higher
sequence similarity between S. pombe and S. cerevisiae [108].
Their results therefore suggest that many of the interactions
between humans and S. pombe are conserved, but specifically
lost in the S. cerevisiae lineage. Besides, they tested whether
known disease-causing mutations that disrupt PPIs in humans
also disrupt PPIs in S. pombe. Their results showed that

in the three tested cases (NMNAT1-NMNAT1, PCBD1-PCBD1,
and SNW1-PPIL1), the introduced mutations in the S. pombe
counterparts also disrupted PPIs.

Disease-associated genes

The idea that yeast might be a useful model of human
diseases has already emerged right after the completion of the
sequencing of both S. cerevisiae and S. pombe [11, 12]. Based
on data from Heinicke et al., S. cerevisiae has approximately
1000 genes, which have orthologues in gene families
associated with human diseases [17]. In the case of S. pombe,
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we have an up-to-date and relevant information source on
this topic, since the PomBase database is in connection with
the Monarch Initiative [112, 113] and Mondo database [114].
According to PomBase (https://www.pombase.org accessed
on 2024.01.13), S. pombe has 1514 transcripts (proteins and
ncRNAs) that are considered orthologues of human disease-
associated transcripts [14].

THEADVANTAGESOF FISSIONYEASTS INVIRUS
RESEARCH

Viruses can cause various and often fatal diseases. Effective
prevention and treatment of these diseases require extensive
knowledge about the molecular mechanism of the infection
and the changes caused by the viral proteins in the host
cells. Various model organisms are used as hosts to reveal
consequences of viral infections. The yeasts belong to these
model organisms [115], because of their attractive features,
suchaseukaryoticcell structure, small genome,widelyavailable
molecular tools, and the ability of several eukaryotic viruses
to replicate in their cells [20, 116, 117]. That is, yeast cells
are suitable for heterologous expression and the study of viral
proteins.

Here, we would like to provide a brief insight into the
research results of viral proteins produced in the fission
yeast S. pombe, with particular attention to the Human
Immunodeficiency Virus type 1, (HIV-1) Vpr protein, which
has been extensively studied in this yeast species.

HIV1causesAcquired ImmunodeficiencySyndrome (AIDS)
by damaging the immune system, which is a life-threatening
condition. The HIV-1 genome contains several genes, and
each protein encoded by these genes has a special role [118,
119]. Cloning of these viral genes into S. pombe-specific
vectors allowed the researchers to determine the exact cellular
localization of the GFP (Green Fluorescent Protein)-tagged viral
proteins in the yeast cells [119]. The localization of many
proteins was revealed for the first time, while further results
demonstrated that the intracellular localization of the viral
proteins was the same in the yeast and human cells [119].

TheVprgene (VirusproteinR)whichencodesacomponent
of virus particles that promotes virus infectivity, has been
studied in detail [118]. One of the goals was to find out
which cellular processes of the host cells are affected by the
Vpr protein and whether the same processes are inhibited in
the yeast cells and the human cells. Since the S. pombe
genomic sequence [14], and the genetic background of its cell
processes were well-known, and in addition, a large number
of mutant strains were available in this species, it was possible
to express the Vpr gene both in the wild-type and various
mutant strains. The overproduction of the Vpr gene product
revealed that the Vpr protein caused multiple effects on the
host cells. The expression of the viral protein resulted in small
colonies, growth delay, abnormal cell morphology, arrest in the
G2 phase of the cell cycle, and cell death [120–124]. Besides,
the Vpr protein caused depletion of the glutathione, and
oxidative stress, stimulating the production of reactive oxygen
species (ROS) [124–126]. In addition, the direct interaction
of the Vpr protein with the proteosome complex, which is
responsible for ubiquitin-mediated protein degradation, has
also been demonstrated (Fig. 2) [127].

To find out how a single viral protein can destroy various
cellular processes, the phenotypic changes of the transformed

yeast cells were investigated. Examination of cell morphology
of the Vpr-transformed cells showed that the changes were
caused by several cellular abnormalities, such as disruption of
actin cytoskeleton or altered cell polarity [121]. Cloning and
transformation of the mutant Vpr genes enabled the detection
of the effect of a given mutation on the Vpr function. The
results obtained in S. pombe showed highly similar changes
to the human cells that confirmed the conservation of the Vpr
functions. Besides, the truncatedgenesalso revealed that theC-
terminal end of the Vpr proteinwas particularly important for the
cell cycle (G2) arrest, while the N-terminal region was required
for nuclear localization [128]. Chen’s report also demonstrated
that the nuclear localization of the Vpr protein was not required
for G2 arrest, while it was necessary for cell killing, suggesting
that the G2 arrest and cell death caused by Vpr could be
independent functions [128].

The investigation of the Vpr-expressing yeast cells shed
also light on the molecular background of the cell cycle arrest.
The experiments proved that cell cycle arrest correlated well
with increased phosphorylation of the Cdc2 kinase, which is
the key regulator of mitosis [120, 129]. These experiments
showed that the regulators of theCdc2, such aswee1 (encodes
an M-phase inhibitor protein kinase) and the cdc25 (encodes
a phosphatase, M-phase inducer) were important in the Vpr-
induced cell cycle arrest [130, 131]. According to the data, the
Vpr protein promoted the cytoplasmic compartmentalization
of Cdc25 and inhibited its function, which required the Srk1
kinase [123]. Since there are differences in cell cycle regulation
betweenS.pombe andS. cerevisiae (theG2/M transition ismore
important in S. pombe than S. cerevisiae) [53], it was better to
choose the fission yeast for the analysis of Vpr-mitosis relation.

The further results also showed that the Vpr protein
might affect the cell cycle through different pathways
because the rad24 gene (which plays a role in the DNA
damage pathway) was also involved in the Vpr-associated
cell division defect [131]. Based on these results a putative
mechanism of the Vpr-induced cell cycle arrest could also be
determined [131]. The genetic screens, where checkpoint
and mitotic regulator mutants were used, have confirmed the
complexity of the viral effect, and shed light on the role of further
genes, such as rad25, wos2, and hsp16, ef2 that enhanced
or suppressed the cell cycle defect or cell death caused by
the Vpr protein [124, 130, 132, 133]. Examination of Vpr-
induced cell death demonstrated that it resembles apoptosis
and correlateswith changes inmitochondrial morphology. This
study described well the pro-apoptotic effects of Vpr [123].

The S. pombe cells were also suitable for finding agents
that can reduce the negative effects of the Vpr protein. The
H2O2 treatment for example promoted the survival of the
Vpr-expressing yeast cells [134], while a simple fission yeast-
based screening system allowed to find small molecules that
specifically inhibit HIV-1 Vpr [135].

In summary, this simple model organism allowed
researchers to reveal the effects of the multifunctional Vpr
protein on the host cells. The researchers were able to
discover the cellular processes disturbed by the viral protein
and their molecular background, while a comparison with the
results obtained in mammalian cells showed the conserved
characteristics of the viral infection. These results could
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FiGURE 2• The Vpr protein caused multiple effects on the S. pombe cells.

contribute to a better understanding of the mechanism of
viral infection and HIV-1 pathogenesis. Although S. cerevisiae is
also used as a model to study the HIV-1 Vpr effects [136, 137],
there are some major differences that make S. pombe superior
to S. cerevisiae in this regard. Besides the aforementioned cell
cycle control point, the Vpr-induced changes in mitochondrial
morphology more closely resemble those observed in human
cells compared to S. cerevisiae. S. pombe exhibits a greater
degree of similarity to humans with respect to mitochondrial
features [138]. S. pombe displays cell death induced by Vpr
that shares some characteristics with apoptosis in human cells,
potentially making it a more relevant model for studying this
aspect [123].

POMBE FORPRIONBIOLOGY?

Prions are amyloid forms of cellular proteins and are implicated
in many incurable and fatal neurodegenerative disorders. Prion
disease can be transmitted from organism to organism and is
characterized by the accumulation of PrPSc (scrapie isoform of
theprionprotein). Thediseasehasmany forms, suchasgenetic,
sporadic, and acquired [139].

Prions seem to be more widespread than currently
appreciatedbecause the researchdata revealed that yeasts can
also have heritable elements transmitted via proteins [140, 141].
Since many yeast genome sequences are available, they
allow the in silico identification of prion-like genes/proteins
in different species [142, 143]. In this way, genes with various
functions, such as transcriptional regulators, genes involved in
sporulation, copper-transport, and translationwere identified as
prion-associated proteins [141, 143]. Structural analyses also
showed that asparagine/glutamine-rich domains are linked to
amyloidogenesis [140].

In S. pombe 295 PrD (prion-forming domain) containing
proteins were identified [143] . One of the prion-like proteins
is encoded by the ctr4 gene, the study of which, placed S.
pombe on the prion map [143, 144]. The overexpressed form
of this copper transporter protein was proteinase K-resistant
and conferred sensitivity to oxidative stress [143]. In addition,
overexpression of a S. cerevisiae gene (ScSup35) in S. pombe
also demonstrated that this fission yeast can support the
formation and propagation of the S. cerevisiae prion [143].
Experimental examination of the other genes mentioned above
may lead to many new results.

Further characterization of chaperons and heat shock
proteins (HSP), as the latter genes are linked to protein
folding [139], may reveal especially the new details of
prion aggregation. A study has revealed for example that
the C-terminal region of HSP104 plays an essential role
in prion propagation [145], while the results of Reidy and
co-workers confirmed the role of other chaperons in prion
propagation [146]. As also S. pombe has many hsp genes and
geneswithGO term “heat shockprotein binding” (GO:0031072)
(PomBase), their investigation can significantly expand our
knowledge of prion disease.

THEDARKHORSEOF EUKARYOTICCELL RESEARCH:
SCHIZOSACCHAROMYCESJAPONICUS

The most divergent branch of the fission yeast genus is the
dimorphic S. japonicus [10, 44, 147], which has several features
that make it an interesting prospect among other model
organisms [32, 148, 149].

First and foremost, S. japonicus is able to switch between
a unicellular yeast form and a true invasive hyphal form [150–
154]. Hyphal switching can occur through different stimuli:
nutrient deprivation [150], DNA damage [153, 154], the
presence of fetal bovine serum (FBS) or fruit extracts [155, 156],
and negatively regulated by quorum sensing [157]. S.
japonicus is not pathogenic to humans, despite its ability to
form invasive hyphae that penetrate solid surfaces like agar
or gelatine [150, 156, 158]. Moreover, hyphal extension
is initiated in the presence of FBS even in liquid media,
and elevated transcription levels of certain protease-coding
genes can be observed in the hyphae [155, 159]. Thus, it
can be a good non-pathogenic model to study the fungal
dimorphism. However, some unique features distinguish
it from other dimorphic species such as C. albicans. S.
japonicus hyphae does not have a Spitzenkörper, undergoes
complete cell divisions, and remains mononuclear [156].
Additionally, oneof themaster regulators of the yeast-tomycelia
transition, the transcription factor Nrg1 behaves differently in
S. japonicus. In C. albicans, NRG1 represses morphological
transition [160, 161], while in S. japonicus, it rather acts as an
activator of the hyphal switch [157, 159]. Further differences
can be observed as nitrogen starvation is a signal that induces
a morphological switch in C. albicans, but it is not effective in
S. japonicus [162, 163]. In this regard, it seems that the MAPK
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signal transduction pathways contribute somewhat differently
to hyphal induction inS. japonicus than inC. albicans [157, 163].
Besides, the hyphae of S. japonicus are photoresponsive, which
is also an unusual feature amongmost of the other yeasts [164].

However, S. japonicus is also quite different from its closest
relative. While a handful of studies suggest S. pombe can
produce adhesive and invasive hyphae-like phenotypes under
specific conditions or certain genetic backgrounds [165–170],
S. japonicus remains the definitive dimorphic species within the
genus. Furthermore, S. japonicus utilizes a semi-open form of
mitosis, while S. pombe undergoes closed mitosis, they differ
in the regulation of chromatin-nuclear envelope interactions
during mitosis, moreover they exhibit discrepancies in their
dynamics of cytokinesis and gene regulation too [38, 171–186].
For example, while S. pombe assembles the actomyosin ring in
metaphase and requires a mechanism to prevent its premature
constriction, S. japonicus initiates ring assembly only at the
mitotic exit, similarly tometazoancells [149, 176, 187]. Although
all the fission yeasts have large, centromeric regions with
repetitive sequences, S. japonicus does not have specialized
pericentromeric repeat sequences as S. pombe has, but it
has a larger complement of retrotransposons clustered at
centromeric and telomeric regions [10, 60, 188]. The S.
japonicus centromeres consist of arrays of retrotransposons,
which is reminiscent of the human centromeric structure,
moreover, the RNAi pathway is indispensable for both S.
japonicus and mammalians [188–191]. In S. japonicus, RNAi-
mediated silencing of retrotransposons is essential to maintain
centromere function and genome integrity, while the other
fission yeasts rely on the CENP-B proteins and use RNAi
exclusively for heterochromatinmaintenance [10, 60, 188, 192].
They exhibit discrepancy in their cell-wall composition too: the
O-glycans on the cell surface of S. pombe, S. octosporus, and
S. cryophilus mainly composed of tetra-saccharides, whereas
those of S. japonicus mostly consist of trisaccharides (Gal-
Man-Man) [193, 194]. Besides, S. japonicus has a wider
temperature tolerance: the growth of S. pombe is largely
restricted above 37◦C, S. japonicus can even grow at 42◦C
and the generation time is somewhat shorter of S. japonicus
than that of S. pombe [32, 148]. Strikingly, S. japonicus is
well-adapted to anaerobic conditions as it has respiratory
deficiency and is able to grow anaerobically without sterol
supplementation, which is an unusual ability among eukaryotic
organisms [195–198]. In this context, S. japonicus can grow
much faster under fermentative conditions than S. pombe,
and produces ethanol even at 42◦C [197]. Alam and co-
workers showed that in spite of the fact that S. japonicus does
not respire oxygen, it is capable of efficient NADH oxidation,
amino acid synthesis, and ATP generation via modification
of metabolic pathways [199]. S. japonicus is also a suitable
model to study membrane bilayer properties and dynamics in
anoxic environments, knowing that numerous changes can
occur in themembrane lipidomes under hypoxic conditions, for
example, in a tumor microenvironment [200–202].

Thephylogeneticdistancewithin theSchizosaccharomyces
genus is uniquely large, despite the fact, that they possess
remarkably conserved gene content, gene order and gene
structure. According to Sipiczki and Rhind et al., at the level of
protein sequence identity (~55%), S. japonicus is as distant from
S. pombe as the platypus is to humans [10, 44]. Interestingly,

there might be no genus of Ascomycota that exhibits such
a high degree of gene content conservation and sequence
divergence at the same time [48, 49, 203]. Such sequence
divergence, besides thehigh amount of commongenecontent,
really providesanexcellentmodel pair to study the samecellular
processes in different genetic backgrounds. Since most of
the laboratory protocols developed for S. pombe can also be
used (with slight modifications) for S. japonicus, the parallel
investigation of these two species provides an unprecedented
opportunity [174, 201, 204–215].

After we showed that S. japonicus is a remarkable model
organism by itself or in comparison with other species, we can
ask the question: what is S. japonicus able to bring to human
disease research? The answer is not so trivial.

S. JAPONICUSHYPHALGROWTHASAMODEL TO
STUDY THE INVADOPODIAOF TUMORCELLS

Besides the above-mentioned advantages of S. japonicus, so
far no comparisons have beenmade betweenmammalian cells
and hyphal growth. This is not surprising because mammalian
cells do not form structures such as hyphae, do they? We can
say thatmammalian cells do not have structures corresponding
to hyphae, except for one that resembles its behavior: the
invadopodium.

Generally, invadopodia can be described as membrane
protrusions, which play a key role in cancer metastasis.
These actin-rich structures can reach a diameter of 3 µm and
extend several micrometers in length [216]. It can digest the
surrounding tissues by proteases, to help disseminate the
cancerous cells.

One could say that both invadopodia and hyphae are
very specialized structures with different roles. However,
invasive cell growth may have a deep origin, in which particular
features are common among the different lineages [217]. Thus,
comparisons can be made along five main aspects: polarized
growth, actin cytoskeleton, vesicle trafficking, substrate
degradation, and environmental sensing (Fig. 3).

Polarized growth

Both fungal hyphae and invadopodia grow in a polarized
way. When S. japonicus cells switch from the yeast phase to
hyphal growth, they switch from bipolar to unipolar (polarized)
growth [151, 156]. Similarly, the invadopodium is formed
in a specific part of the cell, where the early invadopodium
precursors have accumulated [218]. The data suggest
that this protrusion is often found near the nucleus and
Golgi system [219]. In addition, not only the position of
protrusions themselves but also the polarized exocytosis of
matrix metalloproteinases (MMPs) are the indicators of the
polarized growth of invadopodia [220–222]. Polarized growth
is maintained by the continuous balance of exocytosis and
endocytosis [221], and requires an alteration in the actin
cytoskeleton in the hyphae too [151, 156].

Actin cytoskeleton

Both invadopodia and hyphae have the same coremechanism,
which drives their growth. In the case of invadopodia, the
main core structure is F-actinwith its regulators (WASP,N-WASP,
Arp2/3) [223, 224]. The activation of the Arp2/3 complex is
a critical step in invadopodia formation, which is responsible
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FiGURE 3• Common features of tumor invadopodia and hyphal growth. (A) Tumor invadopodium invades the extracellular matrix (ECM) among
healthy cells. (B) Extension of invasive hypha of the fission yeast S. japonicus in the solid medium among normal vegetative yeast cells. (C) Common
features enable a direct comparison between cancer invadopodia (left side) and the fungal hyphae (right side). Polarized growth: both fungal hyphae
and invadopodia grow in a polarizedway. Actin cytoskeleton: the polarized growth is primarily driven by actin polymerization, and it needs changes in the
cytoskeletal structure. Vesicle trafficking: invadopodia formationorhyphaegrowth isunimaginablewithout vesicle transport. Matrix/substratedegradation:
to continue expansion and acquire nutrition, both the invadopodia and the hyphae need to release enzymes that degrade their surrounding environment.
Environmental sensing: signals from the environment have a substantial impact on the behavior of cells. Invadopodia formation and yeast-to-hyphae
transition are affected by environmental factors like nutrient availability, pH, temperature, or CO2 . *Although transcriptome analysis of the hyphae of S.
japonicus suggested that several coding genes responsible for the production of vacuolar hydrolases were upregulated during hyphal extension [159],
further studies are required to assess the extent of substrate degradation in S. japonicus.
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for the nucleation of actin [223]. Similarly, the accumulation
of actin structures at the tips of the growing hyphae was
noticed in S. japonicus [151, 156]. In addition, Arp2/3 complex
activation (presence) was also required for C. albicans hyphae
formation [225].

The polarized growth is primarily driven by actin
polymerization, which is initiated by the polarisome protein
complex [226]. Its components play an important role in the
polymerization of F-actin into cables, which is required for the
proper hyphae formation of C. albicans [226]. Similarly, actin
polymerization occurs in the invadopodium maturation, in its
third step [218]. In the case of the fission yeasts, the formin
For3 is responsible for actin cable assembly [156, 227]. In S.
japonicus, actin polymerization is essential for polarized growth
as the cells did not show polarized growth at all in the absence
of For3 [156]. Besides, actin depolymerization abolished all
vesicle trafficking and cell tip localization of Ypt3 (Rab11 family
GTPase), which has a role in cytoskeleton organization [156].

Cortactin, which is another important nucleation-promoting
factor, has an important role in the stabilization of the branched
actin network and it has a major role in all steps of invadopodia
formation [228]. Interestingly, the downregulation of cortactin
via thep38pathway resulted in the inhibition of the function and
formation of invadopodia in colon cancer [229]. In S. japonicus,
sty1, which is the orthologue of p38, negatively regulates the
induction and progression of hyphal growth [157]. The latter
indicates that the regulation of certain genes may be similar in
invadopodiaandhyphae. Therefore, therearecritical points that
share similarities in mechanism and are also conserved at the
gene level.

Vesicle trafficking

Invadopodia formation or hyphae growth is unimaginable
without vesicle transport. Soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNARE) are
key components of vesicle transport which enable fusion
between two membranes in an effective and coordinated
way, thus allowing delivery of vesicle contents to the target
site [230]. Gorshtein and co-workers recently reviewed that
the inhibition of vesicle trafficking and SNARE family members
inhibit invadopodia formation [231].

Similarly, SNARE family members are required for
appropriate transport of the cargo vesicles which is essential for
hyphal extension and leads to abolished or reduced virulence
in pathogenic fungi [230, 232]. Thesedata are supported by the
strong vacuolization of the S. japonicus hyphae [151, 155, 156].
Ypt3 vesicles accumulate at the growing hyphal tips of S.
japonicus with a greater intensity than in the yeast cell tips.
This probably reflects an increase in membrane trafficking to
maintain growth rate of the hyphae [156]. In conclusion, the
growth of S. japonicus hyphae relies on the transport of vesicles
on actin filaments for polarized growth with increased rates of
vesicular transport.

Substrate degradation

To continue expansion and acquire nutrition, the hyphae
need to release enzymes that degrade their surrounding
environment. For example, theC. albicans hyphae produce the
secreted aspartyl proteases (SAP), similarly to the cancer cells
that digest the host proteins to acquire nutrients [36, 233, 234].

In the case of tumor cells, extracellular matrix (ECM)
degradation is a crucial step in invading new organs, thus
metastasizing [235]. Invadopodia release MMPs, which
degrade the ECM, facilitating the invasion process [220]. It
is not clear whether invadopodia formation is also driven by
nutrient availability, however, according to van Horssen and
co-workers, the metabolic activity of the cancer cell regulates
matrix degradation [236].

Although S. japonicus does not have C. albicans-like
SAP orthologues, transcriptome analysis of the hyphae of S.
japonicus suggested that several coding genes responsible for
the production of vacuolar hydrolaseswere upregulated during
hyphal extension (Supplementary Table S1) [159]. This finding
parallels observations in C. albicans and invadopodia, where
hyphal growth is associated with the secretion of hydrolytic
enzymes that degrade their surroundings [237–239]. Although
further studies are required to assess the extent of substrate
degradation in S. japonicus, the elevated expression levels
suggest that these enzymes play a role in hyphal elongation,
likely in a manner similar to that observed inC. albicans.

Environmental sensing

Signals from the environment have a great impact on the
behavior of cells. In most cases, the yeast-to-hyphae transition
is affected by nutrient availability, pH, and temperature. In S.
japonicus, acidic pH and 37◦C, along with different types of
nitrogen sources, have a significant impact on filamentous
growth [150, 155]. In C. albicans, besides the aforementioned
factors, CO2 and adherence have triggered filamentous
growth [240].

Invadopodia formation is also affected by similar factors,
such as pH, CO2 , and glucose availability [223, 241]. In
general, the microenvironment of the tumor plays a crucial role
in invadopodia formation and thus in metastasis [242].

Common orthologues and gene regulation

As we have seen in these subchapters, yeast-to-hyphae
transition and invadopodia formation have many features
in common and are comparable to each other. Despite
their distinct functionality, the core mechanisms are very
similar. To determine whether these two processes share
common genes, we compared the RNA sequencing data
from S. japonicus hyphae and invadopodia, without claiming
completeness [159, 243]. In thecaseof theS. japonicushyphae,
1337 genes were significantly upregulated, of which 112
genes showed expression above log2 fold change 2 [159].
1484 genes were significantly downregulated, among which
109 had log2 fold changes below 2 [159]. In the cancer
invadopodia, 5873 genes showed elevated expression, while
5467 genes showed decreased expression levels [243]. Based
on the data of JaponicusDB (accessed on 2024.07.02.), S.
japonicus and humans share ~3500 common orthologues
(https://www.japonicusdb.org/data/orthologs/). According
to our more stringent approach, strict reciprocal BLASTp
analyses (E value ≤ 1 × 10−30) revealed 1774 common
putative orthologues between S. japonicus and H. sapiens
(Supplementary Table S2) [16]. The list of commonorthologues
was compared to the gene lists of the RNA seq obtained from
S. japonicus hyphae [159] and human invadopodia [243],
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TABLE 2• Common orthologues of S. japonicus and humans, whose expression levels are changed in the hyphae and
invadopodia in a similar way.

S. japonicus gene
identifier

human gene log2 inva log2 hyph Intersecting GO categories

SJAG_04499 P54868 2.052 0.888 acetyl-CoAmetabolic process (GO:0006084)
SJAG_03763 Q5TDH0 1.073 0.383 proteolysis (GO:0006508)
SJAG_04224 Q12788 1.049 0.288 endonucleolytic cleavage to generate mature 5’-end of

SSU-rRNA from (SSU-rRNA, 5.8S rRNA,
LSU-rRNA)(GO:0000472)

SJAG_03961 P22557 0.964 1.126 protoporphyrinogen IX biosynthetic process (GO:0006782)
SJAG_03693 O95373 0.916 0.203 protein import to nucleus (GO:0006606)
SJAG_01209 Q15124 0.857 0.510 carbohydrate metabolic process (GO:0005975)
SJAG_03401 Q9BXP2 0.813 0.941 monoatomic ion transport (GO:0006811)
SJAG_03866 A0A2R8Y635 0.761 0.457 transmembrane transport (GO:0055085)
SJAG_00451 Q9UI42 0.757 0.476 proteolysis (GO:0006508)
SJAG_0230 Q9UNX4 0.669 0.478 maturation of SSU-rRNA (GO:0030490)
SJAG_04204 P08708 0.662 0.548 translation (GO:0006412)
SJAG_01438 P13639 0.607 0.540 translation (GO:0006412)
SJAG_00911 Q9BZJ0 -0.597 -0.718 spliceosomal complex assembly (GO:0000245)
SJAG_04821 Q96F25 -0.603 -0.792 dolichol-linked oligosaccharide biosynthetic process

(GO:0006488)
SJAG_04308 Q9NVU7 -0.662 -0.349 ribosomal large subunit export from nucleus (GO:0000055)
SJAG_00272 P40938 -0.668 -0.938 DNA replication (GO:0006260)
SJAG_00111 Q149N8 -0.669 -2.141 protein polyubiquitination (GO:0000209)
SJAG_01924 Q9Y5U8 -0.761 -0.363 mitochondrial pyruvate transmembrane transport

(GO:0006850)
SJAG_04540 Q13216 -0.775 -0.604 protein polyubiquitination (GO:0000209)
SJAG_04307 A0A8Q3WKR8 -0.866 -0.400 isoprenoid biosynthetic process (GO:0008299)
SJAG_03436 Q81Y18 -0.931 -0.605 double-strand break repair via homologous recombination

(GO:0000724)
SJAG_02625 Q14997 -0.972 -0.452 DNA repair (GO0006281)
SJAG_00851 O75037 -1.080 -1.207 microtubule-basedmovement (GO:0007018)
SJAG_16456 Q96GW9 -1.289 -0.795 translation (GO:0006412)
SJAG_04068 P11168 -3.039 -0.696 carbohydrate transport (GO:0008643)
SJAG_03434 P80404 -3.543 -1.596 gamma-aminobutyric acid metabolic process

(GO:0009448)

Each row corresponds to an orthologous protein pair, includes their S. japonicus and human identifiers, and their log2-transformed values,
which show their mRNA levels in invadopodia (log2 inva) and hyphae (log2 hyph). Besides, the intersection of Gene Ontology (GO) terms,
and the associated GO categories are listed in it. To create this table, we downloaded the human proteome from UniProt (https://www.uniprot.
org/ accessed on 12.27.2023.) and the S. japonicus proteome from JaponicusDB (https://www.japonicusdb.org/ accessed on 12.27.2023.).
Reciprocal BLAST analysis was carried out using blast+ (ver. 2.13.0) [16]. The cutoff value was set to E ≤ 1 × 10−30 . Based on these data,
we found 1774 common orthologues between S. japonicus andH. sapiens. Then this list was further filtered using the data from [243] and [159],
resulting in a total of 86 genes. These geneswere subjected to categorization byGO terms (https://www.ebi.ac.uk/QuickGO/help/slims accessed
on 12.27.2023.), specifically focusing on the terms associated with biological processes. Only the terms that were present in both species were
retained. At last, 26 genes remained, whose belonged to the same GO categories and expressed in a similar way.

which resulted in a total of 85 common genes (Supplementary
Table S3). These genes were subjected to categorization by
Gene Ontology (GO) terms, considering mainly the common
biological processes. In this way, the common orthologue
number was reduced to 53 (Supplementary Table S4). 26
genes out of 53 exhibited similar regulation in both hyphae and
invadopodia (Table 2), whereas 27 genes showed opposite
regulation (Supplementary Table S4). Several gene pairs
belonged to the GO categories of transport or metabolic
processes (Table 2 and Supplementary table S4). Although
the number of common orthologues is quite small and half of
the genes were differently regulated, they might still be good
indicators or startingpoints for further investigationof regulatory

mechanisms.
We should bear in mind that this is only one pairwise

comparison from one-on-one specific conditions, data from
different circumstances might result in substantially different
gene sets. Moreover, we should also consider the fact that
invadopodia are formed in cells that carry severe genetic
mutations, in contrast to the normal genetic background of S.
japonicus in which the hyphae were produced. Taking these
considerations into account, we would consider it particularly
interesting to examine the S. japonicus hyphae production
in such a mutational genetic background that resembles the
genetic background of the invadopodia. In particular because
someS. japonicuscell cyclemutant strainsproducedsomewhat
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FiGURE 4• Microscopic and macroscopic morphologies of different Schizosaccharomyces japonicus strains. Microscopic morphology of the
wild-type S. japonicus cells (A) and colony morphology of the yeast phase and hyphae on agar plate (indicated with white arrows and labels) (B). Cell
morphology of a yet unidentified cell separation mutant strain (C) and its yeast phase and hyphae production (D). Cell sizes in (A) and (C) are not to scale,
the images concentrate on the cell morphology. Scale bars represent 10µm. Microscopic imageswere capturedwith anOlympusDX-40microscope and
an Olympus DP-70 camera. Photos were taken in different focal planes and stacked with the program Combine ZP.

different hyphae (Fig. 4 C, D), compared to the wild-type strain
(Fig. 4 A, B).

LABORATORYUSEANDTOOLKITS

Although there is a tendency for most molecular toolkits to
be developed for S. cerevisiae first, then adapt to the fission
yeasts, sometimes the latter species proves to be a better
subject in terms of practical implications. Many wild-type S.
cerevisiae strains are used as laboratory models, and because
of this, it often happens that the samemutation causes different
phenotypes in different wild-type strains [244, 245]. This often
makes the comparison of the results difficult. In contrast, almost
every labworkingwithS.pombeuses the samestrains: theL968
h90 homotallic, the L972h− and the L975h+ heterotallic strains
isolated by Urs Leupold [246]. As a result, majority of the studies
using S. pombe can be directly compared and contrasted.
Furthermore, L968 is a natural isolate, which does not behave
differently compared to the other natural isolates [247].

Numerous useful databases, protocols and toolkits have
arisen through the years for the fission yeasts. Virtually, all
the molecular biology tools available were adapted or can be

adapted to fission yeasts, from standard gene replacements to
CRISPR-Cas9 and from FISH to Hi-C systems [248–252]. Since
Herrera-Camacho and co-workers have presented many useful
applications for S. pombe, here we just focus on the recently
described methods, online tools and algorithms (Table 3 and
4) [251].

Both S. pombe and S. japonicus have their own dedicated
databases: PomBase and JaponicusDB, which are community-
curated (Table 3) [14, 15]. These platforms summarize the
results reported by the researchers working with the fission
yeasts; theyenablea rapidoverviewof the recentdevelopments
in many topics.

LIMITATIONS

Despite all good features of yeasts, they also have their own
limiting factors. Since all the fission yeast species have their
unique elements of metabolic pathways and protein interaction
networks, most of the biological processes can only be
”similar” to their human counterparts. Although we could gain
useful information about human diseases using fission yeast
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TABLE 3• Online platforms and bioinformatic tools for the fission yeasts.

Databases/Tools Links
Pombase https://www.pombase.org/
Forsburg lab https://dornsife.usc.edu/pombenet/
Bähler lab https://www.bahlerlab.info/resources/
EnsemblFungi http://funig.ensembl.org/Schizosaccaromyces_pombe/Info/Index
EnsemblFung https://funig.ensembl.org/Schizosaccaromyces_japonicus/Info/Index
JaponicusDB https://www.japonicusdb.org/
Oliferenko lab http://www.oliferenkolab.uk/protocols.html
Japonet https://shigen.nig.ac.jp/yeast/japonet/
Methods/Tools Description Reference
Protein function prediction Phenomics andmachine-learning approaches to predict protein function [253]
pomBseen Analysis pipeline for the quantitation of fission yeat micrographs containnig

bright-field channel and up to two fluorescent channels
[254]

DeepEdit A powerful tool for the study of RNA editing [255]
DeePiCt An open-source deep-learning framework for supervised segmentation and

macromolecuar complex localization in cryo-electron tomography
[256]

3Dmodels of chromosomes Building 3Dmodels from raw Hi-C data [257]
YEASTRACT+ Tool for the analysis, prediction andmodelling of transcription regulatory

data
[258]

PTMint Manually curated complete experimental evidence of the PTM regulation on
protein-protein interactions

[259]

Metabolic modelling Computational modeling of metabolic networks [260]
Photo Phenosizer Machine learning-basedmethod to measure cell dimensions [261]
3D-SIM pipeline Three-dimensional structured illumination microscopy (3D-SIM) image

analysis pipeline for nuclear pore complex quantitation
[262]

Serine phosphorylation prediction A computational predictor was proposed to predict serine phophorylation
sites mapping on S. pombe

[263]

Yesprit and Yeaseq Applications for designing primers and browsing sequences in four fission
yeast species

[264]

GproDIA A framwork for the proteome-wide characterization of intact glacopeptides
from data independent acquisition (DIA) data with comprehensive statistical
control

[265]

Spindle elongation dynamics An ImageJ plugin that can automatically track S. pombe spindle length over
time and replace manual or semi-automated tracking of spindle elongation
dynamics

[266]

ChroMo An interactive, unsupervised cloud application specifically designed for
exploring chromosomemovement datasets from live imaging

[267]

models [297–305], there will always be differences that we
should be cautious about. At the same time, complex processes
cannot be investigated because of the lack of multicellular
phenotypes. But beyond the trivial, there are other factors to
consider.

The creation of auxotrophic mutant strains is a widely used
procedure in yeast genetics. Auxotrophicmutant strains enable
researchers to easily verify the success of a gene deletion or
plasmidvector introduction into thecells, for example. However,
there is emerging evidence that a knockdown of even a simple
metabolic gene could produce a pleiotropic effect, which
causes a complex phenotype leading to false conclusions.
For instance, a defect in certain amino acid (AA) biosynthetic
pathways may activate the general AA control and suppress
the TOR pathway, depending on the growth conditions [306–
308]. In the case of S. pombe, leucine (Leu) auxotroph strains
have been used for decades [309], although Leu auxotrophy
can cause altered intracellular response compared to the
prototrophicwild-typestrain [307]. Similarly, theuseof theURA3
gene as a selective marker caused decreased virulence in C.

albicans, thus, it resulted in misleading phenotypes [310, 311].
The effect could be more severe in the case of strains that have
two or more auxotrophies. The situation is not much better
when using antibiotic-resistant genes as genetic markers. To
ensure a sufficient expression of the marker gene, constitutive
promoters are generally used. Those promoters sometimes
act bidirectional or might elevate the expression levels of the
neighboring genes too [312]. In that particular case, we are
again facingapleiotropicphenotype. It is also commonpractice
to knock out one of the members of the non-homologous DNA
end joining (NHEJ) repair system to enhance gene targeting
efficiency. Without efficient NHEJ, the cells ideally use the
homologous recombination repair system, which enables
precise integration of the foreign DNA into the target genome.
Despite NHEJ-deficient strains showing normal phenotypes
in standard circumstances, NHEJ members have many other
roles that go beyond just joining DNA ends. In S. pombe, the
Pku70-Pku80heterodimer plays a critical role in telomere length
maintenance and recovery from replication stress [313, 314].
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TABLE 4• Recent experimental tools and protocols for the fission yeasts.

Methods/Tools Description References
Quantifying turgor
pressure

Experimental approach to access turgor pressure in yeasts based upon the
determination of isotonic concentration using protoplasts as osmometers

[268]

POMBOX Modular tools for generating plasmids with up to 12 transcriptional units [269]
New vectors New S. pombe vector systems employing lys1 and arg3 as markers [270]
CRISPRi CRISPR interferencemethod to study essential genes in S. pombe [271, 272]
BiFCo Introduction of bimolecular fluorescent cohesin to monitor cohesin complex

assembly and disassembly
[273]

CRISPR-Cas13d Implementation of the CRISPR-Cas13d system in fission yeast for RNA knockdown [274]
Kinetochore
nanostructure

Construction of a nanometer-precise in situ map of the human-like regional
kintetochore of S. pombe usingmulti-color single-molecule localization microscopy

[275]

Heterothallic strains Creating heterothallic strains of S. pombe [276]
SLIPT Introduction of self-localizing ligand-induced protein translocation (SLIPT) system in

S. pombe
[277]

SILAC Stable isotope labeling by amino acids (SILAC) to apply for protein identification and
quantification

[278]

TCP-seq Translation-complex profiling of fission yeast cells [279]
Visualizing tropomyosins Tools to visualize tropomyosins in four different organisms/cell types using anmNG

fusion strategy
[280]

Barcodedmutant arrays Construction of a S. pombe transposon insertion library [281]
Mulitcopy suppressors A protocol for carrying out ’multicopy suppression’-based genetic screen in S.

pombe
[282]

Fluorescnece exclusion A rapid, accurate and powerful method for measuring yeast cell volume [283]
Protein-RNA interactions Quantitative analysis of protein-RNA interactions [284]
DNA Curtain Technique DNA curtain is a hybrid technique that combines lipid fluidity, microfluidics, and total

internal reflection fluorescencemicroscopy (TIRFM) to provide a universal platform
for real-time imaging of diverse protein-DNA interactions

[285]

PDE inhibitors Platform for expressing cloned cyclic nucleotide phosphodiesterases (PDEs) and
robust screening for small molecule inhibitors that are cell permeable

[286]

Cell cycle stage Detecting cell cycle stage and progression in fission yeast [287]
Cell cycle synchrony Cell cycle synchrony methods for fission yeast [288]
Mitotic inheritance of
histonemodifications

A framework to successfully implement an inducible heterochromatin
establishment system and evaluate its molecular properties

[289]

DRIP assay Antibody-based DNA:RNA immunoprecipitation (DRIP) strategy [290]
Near-infrared imaging Easy use of multiplexed live-cell imaging in fission yeast with a broader color palette [291]
Protein interactions Introduction of an efficient and convenient method termed the Pil1 co-tethering

assay to detect binary, ternary, and quaternary protein interactions
[292]

Local protein
accumulation kinetics

A detailed protocol for determining protein accumulation kinetics at the division site
in S. pombe and S. cerevisiae

[293]

G-Quadruplex-DNA-
Disrupting Small
Molecules

In vitro assays to reliably identify molecules able to destabilize G-quadruplex-DNA [294]

New vectors New vectors to simplify the genome editing protocols [295]
Hyphal RNA isolation Simple method to grow hyphae and isolate quality RNA from hyphal tips [158]
AID vectors Two plasmids that facilitate the introduction of the mini auxin-inducible degron

(mAID) tag with a FLAG epitope or GFP by the conventional PCR-based gene
targeting method

[296]
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In S. japonicus, disruption of the Ligase 4 (lig4) gene resulted
in a seemingly normal phenotype [315]. However, increased
sporulation on complete medium, decreased hyphal growth,
faster chronological aging, and higher sensitivity to heat shock,
UV light, and caffeine can be observed in the lig4-disrupted
strains [315]. Thus, gene characterization conducted in an
NHEJ-deficient strain could also lead to incorrect conclusions.

Although we are able to track dynamic cellular processes
by using chemical inhibitors, many drugs are not efficient
enough for fission yeasts because of their multidrug resistance
(MDR) [316–318]. Thus, finding a new therapeutic agent or
investigating the performance of a candidate might not work
well in the fission yeast (or in other yeasts). However, there
are several counterexamples, of course [319, 320]. It is even
possible tomakefissionyeasts sensitive todrugsbyengineering
their MDR-related genes [318], but the effect of those gene
deletions might resemble the gene deletion effects of other
metabolic or DNA repair pathway genes.

In fact, any gene knockdown could cause secondary
gene mutations or overall genomic imbalance, which initiates
adaptive genomic changes [321]. Of course, the purpose of
many studies is exactly to understand these changes. But
we should bear in mind, that all the yeasts have a very short
generation time, and the continuous inoculation of their cells
could result in multiple bottlenecks and in parallel, forced
genome evolution. There is a lot of anecdotal evidence
circulating among researchers when they experience that
a mutant yeast strain completely changes its behavior after
a certain number of rounds of inoculation. To provide
experimental evidence, Szamecz et al. showed that many
knockout strains have recovered and exhibited almost as
good fitness as the wild-type strain did after certain rounds
of generation [322]. Although they performed their experiments
with S. cerevisiae, their result could easily be true for the fission
yeasts too.

CONCLUSIONS

With this particular review, we would have liked to emphasize
the importance of the fission yeastmodels, aswe are convinced
that they still have many unexploited benefits. Although the
number of researchers using fission yeasts is relatively high, the
size of the fission yeast community is nowhere near the size of
the budding yeast community. Obviously, in many cases, it is
easier to work with S. cerevisiae, but the fission yeasts share
substantially more fundamental biological processes with the
metazoans. Therefore, we wanted to highlight some of the
differences between budding and fission yeast models, without
claiming completeness. Besides, we also wanted to promote
S. japonicus as a less-known, but emerging model organism
with unique features. As we have shown, S. japonicus is more
similar to mammalian cells in certain features than S. pombe
is. Moreover, in our view, S. japonicus can easily be a non-
mammalian model for tumor invadopodia studies, since the
fundamental processes of invadopodia formation and hyphae
formation can be rationally compared. Although it is obvious
that none of the yeasts can be used as equivalent models
of human diseases, we believe that the fission yeasts could
substantially contribute to our understanding of the molecular
background of human diseases.
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