microbial Research Article

® cell

www.microbialcell.com

Fecal gelatinase does not predict mortality in patients
with alcohol-associated hepatitis

Yonggiang Yang™2, Phillipp Hartmann?32 and Bernd Schnabl™**

TDepartment of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. 2Department of Pediatrics, University of California San
Diego, La Jolla, CA, 92093, USA. 3Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, CA, 92123, San
Diego, USA. *Department of Medicine, VA San Diego Healthcare System, CA, 92161, San Diego, USA

xCorresponding Author:
Bernd Schnabl, Tel.: 858-822-5311, Fax: 858-246-1788; E-mail: beschnabl@ucsd.edu

aEqual contribution as a first author.

doi: 10.156698/mic2024.08.836
Received originally: 22. 04. 2024;
in revised form: 09. 08. 2024,
Accepted: 13. 08. 2024
Published: 26. 08. 2024

ABSTRACT Alcohol-associated liver disease is highly prevalent worldwide, with
alcohol-associated hepatitis as a severe form characterized by substantial
morbidity, mortality, and economic burden. Gut bacterial dysbiosis has been
linked to progression of alcohol-associated hepatitis. Fecal cytolysin secreted
by the pathobiont Enterococcus faecalis (E. faecalis) is associated with increased
mortality in patients with alcohol-associated hepatitis. Although gelatinase is
considered a virulence factor in E. faecalis, its prevalence and impact on alcohol-
associated hepatitis patient outcomes remains unclear. In this study, 20 out of 65
(30.8%) patients with alcohol-associated hepatitis tested positive for gelatinase in
their stool. There were no significant differences in 30-day and 90-day mortality
between gelatinase-positive and gelatinase-negative patients (p=0.97 and p=0.48,
respectively). Fecal gelatinase had a low discriminative ability for 30-day mortality
(area under the curve [AUC] 0.50 vs fibrosis-4 Index (FIB-4) 0.75) and 90-day
mortality compared with other established liver disease markers (AUC 0.57 vs FIB-
4 0.79 or ‘age, serum bilirubin, INR, and serum creatinine’ (ABIC) score 0.78).
Furthermore, fecal gelatinase was not an important feature for 30-day or 90-day
mortality per random forest analysis. Finally, gelatinase-positive patients with
alcohol-associated hepatitis did not exhibit more severe liver disease compared
with gelatinase-negative patients. In conclusion, fecal gelatinase does not predict
mortality or disease severity in patients with alcohol-associated hepatitis from our
cohort.
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INTRODUCTION via the gut-liver axis [7]. In particular in alcohol-associated

Alcohol-associated liver disease is one of the most common
liver diseases worldwide, affecting an estimated 123 million
individuals and contributing to approximately 25% of cirrhosis-
related deaths [1, 2]. Alcohol-associated hepatitis represents a
severe form of alcohol-associated liver disease and is associated
with the fastest disease progression [3]. Alcohol-associated
hepatitis is also associated with bacterial infections and the
development of acute-on-chronic liver failure, multiorgan failure,
culminating in high short-term mortality rates of 20-560% within
three months [4]. Approximately 60% of hospitalizations due to
complications of cirrhosis or acute-on-chronic liver failure were
caused by alcohol-associated cirrhosis and alcohol-associated
hepatitis [5]. There appears to be a growing global incidence
of alcohol-associated hepatitis, particularly among young
adults and women, incurring a growing health and clinical

burden [6]. Gut microbial dysbiosis has been associated with
the development and progression of chronic liver diseases
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liver disease, various populations of the gut microbiota have
been implicated in the pathogenesis and worsening of liver
disease [8]. Excessive alcohol consumption increases gut
permeability by disrupting tight junctions in intestinal epithelial
cells and changes the composition of the gut microbiota [9, 10].
Furthermore, evidence of bacterial translocation from the gut-
colonized niche has been observed in patients with alcohol-
associated hepatitis [11]. Specifically, we have unveiled that
approximately one-third of patients with alcohol-associated
hepatitis were colonized with cytolysin-positive Enterococcus
faecalis (E. faecalis), which confers more severe liver disease
and elevated mortality rates [8].

E. faecalis is a Gram-positive bacterium found in the
intestinal tracts of healthy individuals. It also acts as an
opportunistic pathogen and is frequently isolated in nosocomial
settings [12]. E. faecalis has developed the ability to colonize

Microbial Cell | Vol. 11


www.microbialcell.com
mailto:beschnabl@ucsd.edu
https://doi.org/10.15698/mic2024.08.836
https://www.microbialcell.com

Y. Yang et al. (2024)

Fecal gelatinase in AH patients

TABLE 1 @ Baseline demographic and laboratory data of the study population.

n  Alcohol-associated Hepatitis (n=65)
Gender: Male 65 39 (60.0%)
Age lyears] 65 485 [39.2,57.0]
Body-mass index (BMI) [kg/m?] 59 26.9[23.8,30.1]
Aspartate aminotransferase (AST) [U/L] 64 146 [90.0;201]
Alanine aminotransferase (ALT) [U/L] 63 49,0 [29.5,66.5]
Gamma-glutamyltransferase (GGT) [U/L] 38 162 [115;562]
Alkaline phosphatase (AP) [U/L] 63 1741123;250]
Bilirubin [mg/dL] 64 13.9[8.00,22.2]
Albumin [g/dL] 63 2.50[2.14;3.00]
International normalized ratio (INR) 64 2.00[1.60;2.20]
Creatinine [mg/dL] 64 0.76 [0.60;1.10]
White blood count (WBC) [109/L] 64 10.6 [6.36;13.9]
Hemoglobin [g/dL] 64 10.2[9.10;11.7]
Platelets [109/L] 63 122[77.5,164]
Dialysis: yes 49 2 (4.08%)
Antibiotics: yes 64 15 (23.4%)
Steroid treatment: yes 64 28 (43.8%)
Child-Pugh Class 62 CI[BC]
Fibrosis-4 Index (FIB-4) 62 6.49[4.70,13.5]
Maddrey’s DF 56 70.5[52.9,127]
ABIC 64 8.11[6.85;8.92]
MELD 64 23.7 [21.8,28.6]
MELD-Na 64 27.0124.1;31.4]
Gelatinase: positive 65 20 (30.8%)
Cytolysin: positive 48 12 (25%)

Values are presented as median and interquartile range in brackets. The number of subjects for

which data were available is indicated in the second column. ABIC, ‘Age, serum bilirubin, INR,
and serum creatinine score’; Maddrey's DF, Maddrey’s Discriminant Function; MELD, model for
end-stage liver disease; MELD-Na, sodium-adjusted model for end-stage liver disease.

and persist in hospital environments, leading to nosocomial
transmission through patient-to-patient contact or via invasive
medical devices [13]. E. faecalis has been reported to cause
hospital outbreaks of bacteremia, urinary tract infections, and
endocarditis [14]. The estimated annual incidence of E. faecalis
bloodstream infections is ~ 4.5 per 100,000, with a case fatality
rate ranging between 10 and 20% [15]. Ethanol administration
facilitates the translocation of gut-originated pathogenic E.
faecalis to the liver in mice, exacerbating the progression of liver
disease [8]. Therefore, exploring the association of pathogenic
E. faecalis with the outcomes of patients with alcohol-associated
hepatitis is of significant clinical relevance.

Gelatinase is a neutral metalloprotease requiring Ca2+
for activity and plays a role in proteolysis and disruption of
basement membranes through collagen degradation [16, 17].
In E. faecalis, gelatinase is considered a virulence factor and is
associated with biofilm formation [18]. Furthermore, gelatinase
has been identified as a principal mediator of pathogenesis in
endocarditis caused by E. faecalis in animals [16]. Gelatinase
was prevalent in clinical isolates from patients with bacterial
infections, such as endocarditis [19, 20] and bacteremia [20, 21]
and fecal isolates [19]. Gelatinase has been shown to promote
the translocation of E. faecalis in vitro [22].  Importantly,
colonization with gelE (encodes gelatinase)-positive E.
faecalis has been linked to liver carcinogenesis in vivo via the
translocation of lipopolysaccharide to the liver and an increase
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in the expression of proliferative genes [23]. Further, it has
been shown that the enrichment and translocation of E. faecalis
is associated with more severe ethanol-induced liver disease
in mice [8], thus, it is likely that the presence of gelatinase in
feces could cause more severe alcohol-associated liver disease
in patients. This study aims to investigate the significance of
fecal gelatinase on clinical outcomes in patients with alcohol-
associated hepatitis.

RESULTS
Patient Cohort

The study population consisted of 65 patients with alcohol-
associated hepatitis (Table 1). Of these, 60% (39/65) were male,
with a median age of 48.5 years and body-mass index (BMI) of
26.9 kg/m?2. 19 out of 29 (65.5%) biopsied patients had cirrhosis.
The median value of ALT and AST was 49 U/L and 146 U/L,
respectively. See additional serum disease markers and scores
in Table 1.

Presence of Fecal Gelatinase does not Predict 30-day and
90-day Mortality in Patients with Alcohol-Associated
Hepatitis

Of the total, 30.8% (20/65) patients were positive for gelatinase
in their stool samples (Table 1). The contribution of each
center for gelatinase-positive and gelatinase-negative patients
is shown in Table 2. However, because of the limited number

Microbial Cell | Vol. 11


https://www.microbialcell.com

Y.Yang et al. (2024) Fecal gelatinase in AH patients

TABLE 2 @ Number of gelatinase-positive and gelatinase-negative patients in each country.

Number Spain UK France Mexico Canada USA
Gelatinase positive 4 0 4 1 0 11
Gelatinase negative 2 12 4 2 6 19

=~ Gelatinase negative =+ Gelatinase positive =~ Gelatinase negative =+ Gelatinase positive

1.001 |

p=0.97 p=0.48

Transplant-free Survival
o
wn
o
Transplant-free Survival
o
o
o

0 10 20 30 0 30 60 90
Days Days
Number at risk Number at risk

Gelatinase negative 43 41 38 38 Gelatinase negative 43 38 29 16
Gelatinase positive 17 16 15 13 Gelatinase positive 17 13 10 5
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FIGURE 1 @ Fecal gelatinase does not predict 30-day or 90-day mortality in patients with alcohol-associated hepatitis. (A) Kaplan-Meier curve
for 30-day survival in gelatinase positive and gelatinase negative patients with alcohol-associated hepatitis. (B) Kaplan-Meier curve for 90-day survival
in gelatinase positive and gelatinase negative patients with alcohol-associated hepatitis. (C) ROC curves of liver disease markers for 30-day mortality
in patients with alcohol-associated hepatitis. (D) ROC curves of liver disease markers for 90-day mortality in patients with alcohol-associated hepatitis
(Gelatinase n=60, Child-Pugh n=57, FIB-4 n=57, Maddrey's DF n=52, ABIC n=59, MELD score n=59, and MELD-Na score n=59). ABIC, ‘Age, serum bilirubin,
INR, and serum creatinine score’; FIB-4, Fibrosis-4 Index; INR, international normalized ratio; Maddrey’s DF, Maddrey's Discriminant Function; MELD, model
for end-stage liver disease; MELD-Na, sodium-adjusted model for end-stage liver disease; ROC, receiver operating characteristic.
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TABLE 3 @ 30-Day Mortality Predictors.

Marker AUC Threshold Youden Sens Spec Acc PPV NPV p valuevsGel. AUC
Gelatinase 0.50 Presence 0.00 0.29 072 067 012 088 -
Child-Pugh 0.51 B 0.02 100 002 014 012 1.00 0.949

FIB-4 0.75 8.37 0.54 086 068 070 027 097 0.059
Maddrey's DF  0.56 132.70 0.26 100 026 035 015 1.00 0.716

ABIC 0.68 7.83 0.52 100 052 058 022 1.00 0.214

MELD 0.58 23.94 0.29 0.71 058 059 019 094 0.690
MELD-Na 0.59 25.46 0.30 086 044 049 017 096 0.583

The best threshold was determined to maximize the Youden index (= sensitivity + specificity - 1) for each marker. Gelatinase
n=60, Child-Pugh n=57, FIB-4 n=57, Maddrey's DF n=52, ABIC n=59, MELD score n=59, and MELD-Na score n=59. ABIC,
‘Age, serum bilirubin, INR, and serum creatinine score’; Acc, accuracy;, AUC, area under the curve; Gel, Gelatinase; FIB-
4, Fibrosis-4 Index; INR, international normalized ratio; Maddrey's DF, Maddrey’s Discriminant Function; MELD, model for
end-stage liver disease; MELD-Na, sodium-adjusted model for end-stage liver disease; NPV, negative predictive value; PPV,
positive predictive value; Sens, sensitivity; Spec, specificity.

TABLE 4 @ 90-Day Mortality Predictors.

Marker AUC Threshold Youden Sens Spec Acc PPV NPV p valuevsGel. AUC
Gelatinase 0.57  Absence 0.13 0.81 032 045 030 082 -
Child-Pugh 0.58 C 0.15 0.81 034 047 032 082 0.877

FIB-4 0.79 775 0.49 080 069 072 048 091 0.019
Maddrey's DF  0.59 48.08 0.23 100 023 042 030 1.00 0.574
Maddrey's DF  0.59 51.98 0.23 092 031 046 031 092 0.574

ABIC 0.78 7.83 0.63 100 063 073 050 1.00 0.012

MELD 0.66 23.94 0.32 069 063 064 041 084 0.250
MELD-Na 0.67 24.67 0.36 094 042 056 038 095 0.214

The best threshold was determined to maximize the Youden index (= sensitivity + specificity - 1) for each marker. Gelatinase
n=60, Child-Pugh n=57, FIB-4 n=57, Maddrey’s DF n=52, ABIC n=59, MELD score n=59, and MELD-Na score n=59. ABIC,
‘Age, serum bilirubin, INR, and serum creatinine score’; Acc, accuracy, AUC, area under the curve; Gel, Gelatinase; FIB-
4, Fibrosis-4 Index; INR, international normalized ratio; Maddrey's DF, Maddrey’s Discriminant Function; MELD, model for
end-stage liver disease; MELD-Na, sodium-adjusted model for end-stage liver disease; NPV, negative predictive value; PPV,
positive predictive value; Sens, sensitivity; Spec, specificity.

Fecal gelatinase in AH patients

of patients from each country, matching of the area using
statistical techniques could not be carried out in a meaningful
way. Twelve out of 48 (25%) patients were cytolysin positive,
and no difference regarding gelatinase-positivity between
the cytolysin-positive and cytolysin-negative groups (33.3% vs.
33.3%) was observed. Six gelatinase-positive and 13 gelatinase-
negative patients of the entire population had cirrhosis. For
five out of the 65 subjects, no mortality data was available
and therefore there were 60 patients remaining to study the
association of gelatinase with outcomes. There were no
significant differences in 30-day survival and 90-day survival
between gelatinase-positive (n=17) and gelatinase-negative
patients with alcohol-associated hepatitis (n=43) (Figure 1A,
1B). Overall, seven out of 60 (11.7%) and 16 out of 60 patients
with alcohol-associated hepatitis (26.7%) were confirmed dead
within 30 and 90 days, respectively. Two out of 17 gelatinase-
positive patients (11.8%) and five out of 43 gelatinase-negative
patients (11.6%) were confirmed dead within 30 days, whereas
three out of 17 gelatinase-positive patients (17.6%) and 13
out of 43 gelatinase-negative patients (30.2%) were confirmed
dead within 90 days. We subsequently assessed whether
the presence of fecal gelatinase could predict mortality of
patients with alcohol-associated hepatitis. In our cohort, fecal

gelatinase demonstrated poorer performance in predicting
30-day mortality compared with all other tested liver disease
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markers (FIB-4, ABIC score, Child-Pugh class, MELD, MELD-
Na, and Maddrey’s DF), with a low AUC of 0.50 and low best
Youden Index of 0.00 compared to the best performer FIB-4,
which exhibited an AUC of 0.75 and best Youden Index of 0.54
(Figure 1C, Table 3). Fecal gelatinase also had a sensitivity of
0.29, specificity of 0.72, accuracy of 0.67, a positive predictive
value (PPV) of 0.12, and negative predictive value (NPV) of
0.88 for 30-day mortality (Table 3). Similarly, its predictive
performance was poor for 90-day mortality, with an AUC of 0.567
and best Youden Index of 0.13, whereas the FIB-4 and ABIC
score displayed a significantly better AUC of 0.79 and 0.78 and
higher best Youden Index of 0.49 and 0.63, respectively (Figure
1D, Table 4). Additionally, the Cox hazard ratio of death for
gelatinase-positive vs gelatinase-negative patients was 0.6152,
95% confidence interval (0.1753, 2.159), p=0.448 for 30 days
and 0.6389, 95% confidence interval (0.1818, 2.245), p=0.485
for 90 days.

Consistent with the findings above, the presence of fecal
gelatinase exhibited low feature importance for predicting
both 30-day and 90-day mortality according to random forest
analysis, with very low mean decrease Gini score and mean
decrease accuracy when compared with other established liver
disease markers (Figure 2). The FIB-4 and ABIC scores were
the best predictors for 30-day mortality per mean decrease Gini
(Figure 2A) and mean decrease accuracy (Figure 2B). FIB-
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FiIGURE 2 @ Fecal gelatinase is not an important feature for 30-day or 90-day survival in patients with alcohol-associated hepatitis per random forest
analysis. (A) Mean decrease Gini score and (B) mean decrease accuracy for 30-day mortality by random forest analysis were quantitated for presence of
gelatinase and multiple liver disease markers to determine their respective feature importance for mortality. (C) Mean decrease Gini score and (D) mean
decrease accuracy for 90-day mortality by random forest analysis were quantitated for gelatinase and multiple liver disease markers to determine their
respective feature importance for mortality (Gelatinase n=60, Child-Pugh n=57, FIB-4 n=57, Maddrey's DF n=52, ABIC n=59, MELD score n=59, and MELD-
Na score n=59). ABIC, ‘Age, serum bilirubin, INR, and serum creatinine score’; FIB-4, Fibrosis-4 Index; INR, international normalized ratio; Maddrey's DF,
Maddrey's Discriminant Function; MELD, model for end-stage liver disease; MELD-Na, sodium-adjusted model for end-stage liver disease.

4 also had the highest predictive value for 90-day mortality
by mean decrease GINI (Figure 2C), whereas the ABIC score
had the highest predictive value for 90-day mortality by mean
decrease accuracy (Figure 2D).

Fecal Gelatinase-Positive Patients do not Exhibit More
Severe Liver Disease than Gelatinase-Negative Patients
Next, we conducted a comprehensive comparison of various
liver disease indicators between the gelatinase-positive and
gelatinase-negative groups. The markers assessed included
AST, ALT, GGT, AP, bilirubin, FIB-4, Maddrey's DF, ABIC, MELD
score, and MELD-Na score. Our analysis revealed no significant
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differences between the gelatinase-positive and gelatinase-
negative groups (Figure 3). AST levels in gelatinase-positive
patients were higher compared with gelatinase-negative
patients but the difference was not statistically significant
(medians of 167 U/L vs. 128 U/L, P = 0.051) (Figure 3A). The
levels of ALT showed similarity between gelatinase-positive
and gelatinase-negative patients (medians of 55.0 U/L vs.
425 U/L, P = 0.24) (Figure 3B). GGT levels were 189 U/L in
gelatinase-positive patients and 162 U/L in gelatinase-negative
patients (Figure 3C). The alkaline phosphatase and bilirubin
levels between gelatinase-positive and gelatinase-negative
patients were very similar (medians of 152 mg/dL vs. 181
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FIGURE 3 @ Fecal gelatinase positive patients with alcohol-associated hepatitis do not have more severe liver disease than gelatinase negative
patients. (A) AST (n=64). (B) ALT (n=63). (C) GGT (n=38). (D) AP (n=63). (E) Bilirubin (n=64). (F) FIB-4 (n=62). (G) Maddrey’s DF (n=56). (H) ABIC (n=64).
(1) MELD score (n=64). (J) MELD-Na score (n=64). ABIC, ‘Age, serum bilirubin, INR, and serum creatinine score’; ALT, alanine aminotransferase; AP, alkaline
phosphatase; AST, aspartate aminotransferase; FIB-4, Fibrosis-4 Index; GGT, gamma-glutamyltransferase; HE, hepatic encephalopathy; INR, international
normalized ratio; Maddrey’s DF, Maddrey’s Discriminant Function; MELD, model for end-stage liver disease; MELD-Na, sodium-adjusted model for end-
stage liver disease. P value of equal or less than 0.05 was considered as statistically significant.
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mg/dL, P = 0.76, and medians of 13.7 mg/dL vs. 14.1 mg/dL,
P = 0.80, respectively) (Figure 3D, 3E). The median value
of FIB-4 was 8.64 in gelatinase-positive patients and 6.28 in
gelatinase-negative patients. Additionally, the median values
of Maddrey’s DF (67.1 vs. 71.7) and ABIC (7.84 vs. 8.12) were
lower in gelatinase-positive patients compared with gelatinase-
negative patients. Furthermore, the median values of MELD
score and MELD-Na score between gelatinase-positive and
gelatinase-negative patients were nearly identical (Figure 3F-J).
Additionally, we found that seven out of 56 patients (30.4%) with
MELD>20 were gelatinase-positive, compared with two out of
eight patients (25.0%) with MELD of 20 or lower were gelatinase-
positive (P = 0.76, Pearson’s Chi-squared test). Furthermore, ten
out of 28 patients (35.7%) on steroids were gelatinase-positive,
whereas nine out of 36 patients (25.0%) were not on steroids
(P= 0.35, Pearson’s Chi-squared test). Additionally, four out
of 15 patients (26.7%) on antibiotics were gelatinase-positive,
compared with 15 out of 49 patients (30.6%) not on antibiotics
(P =0.77, Pearson’s Chi-squared test). Finally, we found that
neither gender nor overweight or obesity were associated with
gelatinase positivity (data not shown).

DISCUSSION

The development and exacerbation of alcohol-associated
liver disease has been strongly linked to alterations in gut
microbiota [7]. Notably, in mouse models, the prevalence
and overgrowth of cytolysin-positive E. faecalis in the gut
were associated with the severity of ethanol-induced liver
disease [24]. Furthermore, ethanol feeding led to the expansion
of specific strains of Enterococcus and their translocation
to the liver, particularly in conditions where gastric acid was
lacking [24]. More importantly, patients with alcohol-associated
hepatitis carried significant higher amounts of E. faecalis
compared with both non-alcoholic individuals and those
with alcohol-use disorder [8]. The presence of gut-colonized
cytolysin-positive E. faecalis has been shown to predict the
mortality of patients with alcohol-associated hepatitis [8].
However, this seems to be confined to alcohol-associated
hepatitis, as cytolysin-positivity is not associated with increased
disease severity or mortality in nonalcoholic fatty liver disease,
acutely decompensated cirrhosis, or acute-on-chronic liver
failure [25, 26].

Except for the prevalence in patients with alcohol-
associated liver disease, E. faecalis are well-known opportunistic
pathogens that cause nosocomial infections.  However,
unlike Enterococcus faecium, which shows a high proportion
of vancomycin resistance, E. faecalis isolates from patients
with bloodstream infections exhibit a low rate of vancomycin
resistance (13.0% vs. 1.1%) and have remained relatively stable
over the years [27]. In contrast to the lower risk of antimicrobial
resistance, the pathogenicity of E. faecalis raises significant
concerns in clinical settings. Infections caused by E. faecalis are
associated with high mortality rates. In Germany, patients with
E. faecalis bloodstream infections had an all-cause in-hospital
mortality and 90-day mortality of 23% and 37%, respectively [28].
In Mexico, infections caused by linezolid-resistant E. faecalis
resulted in an 18% mortality rate, which was higher than the
control groups (9%) without linezolid-resistant strains [29].
Specifically, among patients with E. faecalis bacteremia in
Mexico, the reported mortality was 10% [30]. Thus, detecting
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pathogenic E. faecalis strains will have therapeutic implications,
as targeted modulation of the intestinal microbiome and its
products can improve alcohol-associated liver disease [8].

The pathogenicity of E. faecalis is attributed to various
virulence factors that enhance adherence, colonization, and
invasion. In addition to cytolysin, gelatinase is considered
a virulence factor of E. faecalis. It has been reported that
gelatinase promotes microbial cell aggregation and accelerates
biofilm formation [18]. However, the relationship between fecal
gelatinase and mortality of patients with alcohol-associated
hepatitis remained unclear. This study is the first study to
investigate the role of fecal gelatinase in liver disease and
particularly in patients with alcohol-associated hepatitis using
a multicenter cohort. Firstly, fecal gelatinase was identified
in 30.8% (20/65) of patients with alcohol-associated hepatitis.
Although Enterococcus species are commonly found in the
human gastrointestinal tract, the prevalence of E. faecalis
varies among individuals when identified using culture-based
methods [31]. Furthermore, among cultured E. faecalis isolates
from patients and healthy subjects, the prevalence of gelatinase
activity was reported as 59.5% (128/215), and no significant
difference in prevalence was observed between clinical
disease-associated isolates and fecal isolates from healthy
individuals [20]. Among urinary isolates from patients with
urinary tract infections, gelE was detected in 87% (52/60) of E.
faecalis isolates [32].

Regarding the clinical outcomes, no significant differences
in 30-day or 90-day survival were observed between gelatinase-
positive and gelatinase-negative alcohol-associated hepatitis
groups. Furthermore, no liver disease markers were associated
with presence of fecal gelatinase. Additionally, a high MELD
score, steroid use, or antibiotic treatment were not associated
with a gelatinase-positive status. We also excluded the potential
effect of cytolysin, as there was no difference in gelatinase
positivity between the cytolysin-positive and cytolysin-negative
groups. These results indicate that fecal gelatinase does not
predict mortality in patients with alcohol-associated hepatitis
in our cohort. However, we acknowledge the limitation of this
study that the small sample size may cause bias. Nevertheless,
if our 90-day survival data for both groups (3/17=17.6%
deaths in gelatinase-positive and 13/43=30.2% deaths in
gelatinase-negative patients with standard deviations of 0.39
and 0.46, respectively) is used, the required total sample size
of patients with alcohol-associated hepatitis would be 610
per two-tailed analysis with an alpha of 0.05, power of 0.95
and 1:1 allocation [33]. Given a very small non-significant
difference between the two groups in our analysis, a very large
total number would hence be required to detect a possibly
statistically significant difference. However, given this very large
required number of patients, itis unclear whether the difference -
even ifit were significant then - would translate into a meaningful
clinical difference. Another limitation of our study is that the
InTeam Consortium only requires at least a 3-month history of
active alcohol abuse, whereas other entities require at least a
6-month history for a diagnosis of alcohol-associated hepatitis
(e.g. American Association for the Study of Liver Diseases
(AASLD) [34]. This could have resulted in a misclassification or
overinclusion of patients in our study. Given the nature of the
multicenter study, the use of the respective hospital laboratory
of each research center might have contributed to inaccuracies
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or biases of laboratory markers between the different centers.
However, significant differences in clinical outcomes including
laboratory markers and survival would have very likely been
detected between gelatinase-positive and gelatinase-negative
patients if presence of fecal gelatinase had been a clinically
meaningful marker in alcohol-associated hepatitis. In the future,
the genome-wide screening of virulence factors of E. faecalis
can be a good way to identify better predictive markers for
alcohol-associated hepatitis, possibly with a similarly very good
predictive value for mortality as cytolysin [8, 35].

Besides fecal samples, in a separate multicenter and
prospective study of E. faecalis bacteremia, it was found that
64% (141/219) blood-originated isolates produced gelatinase,
while 14-day mortality was not associated with the production
of gelatinase [21]. However, it is important to note that the
function of gelatinase is multifactorial and is regulated by
quorum sensing system in E. faecalis [36], and further studies
on its regulatory system are warranted.

In conclusion, in our cohort, fecal gelatinase does not
predict mortality and does not indicate higher disease severity
in patients with alcohol-associated hepatitis.

MATERIALS AND METHODS
Patient Cohorts

A total of 65 patients with alcohol-associated hepatitis were
enrolled between June 2014 and January 2019 (Figure S1).
Patients were recruited from the Gastroenterology/Hepatology
clinics (if outpatient) and hospitals (if inpatient) of the InTeam
Consortium across various countries including the USA, Mexico,
Canada, UK, France, and Spain. The clinical data and follow-
up data of patients (including dates of death) were collected
and submitted separately by each hospital/research center
using a secure clinical data submission system [8, 37, 38]. The
patients were followed up until the last time they were seen
in clinic or the hospital before being censored or until each
center was notified of the confirmed death (with a specific
date of death). The inclusion criteria were as follows: recent
active alcohol abuse (more than 50 g/day for men and more
than 40 g/day for women) within the past three months,
coupled with elevated aspartate aminotransferase (AST)
levels exceeding alanine aminotransferase (ALT) and total
bilirubin >3 mg/dl over the last three months (ClinicalTrials.gov
identifier number NCT02075918) [8, 35, 38].  Either a
clinically indicated liver biopsy or clinical presentation aligning
with the diagnosis of alcohol-associated hepatitis was also
required. Exclusion criteria included autoimmune liver disease
(antinuclear antibody greater than 1:320), chronic viral hepatitis,
hepatocellular carcinoma, complete portal vein thrombosis,
terminal extrahepatic illness, pregnancy, and absence of signed
informed consent [8, 35, 38].

The protocol was approved by the Ethics Committees
at various institutions including Hoépital Huriez (Lille, France),
Universidad Autonoma de Nuevo Leon (Monterrey, Mexico),
Hospital Universitario Vall d'Hebron (Barcelona, Spain), King's
College London (London, UK), University of Alberta (Edmonton,
Canada), Yale University (New Haven, USA), University of
North Carolina at Chapel Hill (Chapel Hil, USA), Columbia
University (New York, USA), University of Pittsburgh (Pittsburgh,

USA), University of Wisconsin (Madison, USA), VA San Diego
Healthcare System (San Diego, USA), and University of California
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San Diego (La Jolla, USA). Written informed consent was
collected from each patient upon enrollment.

The body-mass index (BMI) was calculated during the
clinical office visit. The laboratory markers, including AST,
ALT, gamma-glutamyltransferase (GGT), alkaline phosphatase
(AP), bilirubin, albumin, international normalized ratio (INR),
creatinine, white blood count (WBC), hemoglobin, and
platelets were quantified in the hospital laboratories of the
respective centers.  The Fibrosis-4 Index (FIB-4) equals
(agexAST)/(platelets*/ALT) [39]. The ‘Age, serum bilirubin,
INR, and serum creatinine score’ (ABIC score) corresponds to
[(agex0.1) + (bilirubin*0.08) + (creatinine=0.3) + (INR+0.8)] [40].
The Child-Pugh class as a severity marker of cirrhosis can be A
(5-6 points), B (7-9 points), or C (10-15 points), C being the most
severe class. The respective Child-Pugh class is defined by
the point sum of the various severity markers: encephalopathy
(none = 1 point, grade 1 and 2 = 2 points, grade 3 and 4 = 3
points), ascites (none = 1 point, slight = 2 points, moderate = 3
points), bilirubin (<2 mg/dL = 1 point, 2-3 mg/dL = 2 points, > 3
mg/dL = 3 points), albumin (>3.5 g/dL = 1 point, 2.8-3.56 g/dL =
2 points, <2.8 g/dL = 3 points) and prothrombin time (<4 sec = 1
point, 4-6 sec = 2 points, >6 sec = 3 points)/INR (<1.7 = 1 point,
1.7-2.2 = 2 points, >2.2 = 3 points) [41]. Maddrey's discriminant
function (Maddrey’s DF) is defined by [bilirubin + 4.6+ (patient’s
prothrombin time - control prothrombin time)] [42]. The model
for end-stage liver disease (MELD) equals [9.57+In(creatinine)
+ 3.78xIn(bilirubin) + 11.20«In(INR) + 6.43] [43]. MELD-Na was
calculated by MELD + (140 - sodium) — [0.025 x MELD x (140
— sodium)] [44].

Fecal DNA Extraction and Real-time Quantitative
Polymerase Chain Reaction (RT-qPCR)

Human stool samples were collected from the patients and
immediately stored at -80°C. For DNA extraction, 250 mg of
stool were placed in 2 mL screw-cap tubes (Stellar scientific,
#T20-C3220-SG). 500 pL of InhibitEX Buffer were added to
each stool sample and kept on ice throughout. Samples were
homogenized using a bead beater. Subsequently, genomic
DNA from human stool was extracted using the QlAamp Fast
DNA Stool Mini Kit (Qiagen, #51604) following the provided
instructions [45]. RT-gPCR was conducted using SYBR gqPCR
with a touch-down protocol and KAPA-SYBR FAST gPCR
master mix (Roche Diagnostics, #07959389001) [46]. The
gPCR reaction mix for each sample consisted of 10 ulL 2x
Kapa SYBR, 0.4 plL 100 uM forward primer, 0.4 L 100 uM
reverse primer, 2 uL DNA template, and 7.2 ulL water. The
PCR conditions were as follows: initial denaturation at 95°C
for 30s, followed by 6 cycles of denaturation at 95°C for
3s, annealing and extension at 65°C for 20s, and 72°C for
1s; subsequently, 33 cycles of denaturation at 95°C for 3s,
annealing and extension at 58°C for 20s, and 72°C for 1s;
finally a melting curve from 65 to 95°C with an increase of
0.5°C per cycle for 5s. The following primer sequences were
used: 16S rRNA [47] forward: 5-GTGSTGCAYGGYTGTCGTCA-
3 reverse. 5-ACGTCRTCCMCACCTTCCTC-3. E. faecalis
gelE [48] forward: 5-TATGACAATGCTTTTTGGGAT-3’; reverse:
5-AGATGCACCCGAAATAATATA-3. The wild-type E. faecalis
V583 and the E. faecalis V5683 AgelE served as positive and
negative controls, while nuclease-free water served as a
no-template control. Once amplification was complete, the
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system automatically generated Ct (cycle threshold) values for
each reaction. The average Ct values of E. faecalis V583, E.
faecalis V683 A gelE, and water were 11.23, 30.53, and 37.26,
respectively. A cut-off Ct value of <30 was applied for the
presence of gelatinase.

Statistical Analysis

R statistical software (R version 1.3.1093, 2020 the R Foundation
for Statistical Computing) was used to perform statistical
analyses. Results are described as median and interquartile
range for each continuous outcome and as number and
percentage for factor variables. We used the pROC library in Rto
calculate Area under the receiver operating characteristic (ROC)
curve (AUC) and best threshold to maximize the Youden Index.
We also used the pROC library to calculate sensitivity, specificity,
accuracy, positive predictive value (PPV), negative predictive
value (NPV) - all at the described respective threshold - and P
values between two AUCs per Delong method [49]. Kaplan-
Meier curves were created and the statistical significance of a
difference was calculated to demonstrate the transplant-free
survival of gelatinase-positive vs gelatinase-negative groups
using the survival and survminer libraries in R; censoring out of
participants was indicated by vertical ticks. The random forest
library was carried out to calculate mean decrease Gini score
and mean decrease accuracy [50]. Continuous variables were
compared using the Mann-Whitney U test. A two-tailed P value
< 0.05 was considered statistically significant.
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