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ABSTRACT Molecular de-extinction has emerged as a novel strategy for
studying biological molecules throughout evolutionary history. Among
the myriad possibilities offered by ancient genomes and proteomes, anti-
microbial peptides (AMPs) stand out as particularly promising alternatives
to traditional antibiotics. Various strategies, including software tools and
advanced deep learning models, have been used to mine these host de-
fense peptides. For example, computational analysis of disulfide bond
patterns has led to the identification of six previously uncharacterized B-
defensins in extinct and critically endangered species. Additionally, artifi-
cial intelligence and machine learning have been utilized to uncover an-
cient antibiotics, revealing numerous candidates, including mammu-
thusin, and elephasin, which display inhibitory effects toward pathogens
in vitro and in vivo. These innovations promise to discover novel antibiot-
ics and deepen our insight into evolutionary processes.
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INTRODUCTION

Molecular de-extinction represents a promising area of
scientific research that enables the identification, synthe-
sis, and understanding of molecules’ biological functions
throughout evolution [1]. However, it also raises interest-
ing bioethical and philosophical debates within the scien-
tific community [2]. Advances in ancient DNA sequencing
methods [3] have increasingly allowed us to access bio-
logical data from the past. Ancient DNA sheds light on
historical protein-coding sequences that may not exist in
our current time or have been changed throughout evolu-
tion [4, B]. Furthermore, advancements in computational
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ML - machine learning,
NCBI - National Center for Biotechnology
Information.

biology and artificial intelligence [6-9] have shifted the
discovery of promising molecules from a chance-based
approach to a more intentional and data-driven method-
ology.

Among the extensive range of molecules that can be
found through proteomics or genomics, antimicrobial
peptides (AMPs) stand out. AMPs have played crucial
roles in the defense mechanisms of animals, evolving over
millions of years to protect hosts against various patho-
gens, thereby ensuring survival in ancient environments
[10]. These molecules continue to function in the innate
immune systems of various organisms today, fighting mul-
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tiple microorganisms. They can modulate the immune
system, disrupt cell membranes, target intracellular pro-
cesses, and inhibit biofilm formation [11-14]. Despite con-
siderable variability in AMP structures [15], identifying
specific features is critical for mining these potential anti-
biotics, particularly when leveraging computational tools.

However, it is important to highlight the gap between
the amount of discovered antimicrobial peptides and
those that successfully advance the clinical trials and,
finally, reach the market [16]. Issues related to stability and
toxicity frequently hinder the development cycle, which, in
the best-case scenarios, still averages 13 years to be
launched [17]. The advancement of artificial intelligence
and molecular de-extinction offers a valuable opportunity
not only to discover new antimicrobials but also to provide
accurate in silico predictions, thereby shortening the path
to addressing the global antibiotic resistance crisis.

BIOINFORMATIC TOOLS

Molecular de-extinction employs various methodologies
to mine compounds such as AMPs and other peptide an-
tibiotics from extinct organisms (Figure 1). These ap-
proaches utilize diverse bioinformatics tools to discover
novel AMPs from the genomes and proteomes [1, 18] of
extinct organisms. Digital repositories like the National
Center for Biotechnology Information (NCBI) and the Pro-
tein Data Bank (PDB) provide access to genomic and pro-
teomic data [19, 20]. One current methodology involves
identifying AMPs with specific characteristics of pB-
defensins from the genomes of these organisms [21]. Pro-
grams such as AUGUSTUS can locate protein-coding
genes within genomic sequences obtained from NCBI [21,
22]. To refine the identification process, tools such as
HMMER [23] and InterPro [24] determine which protein
sequences within the selected genomic data belong to
the B-defensin protein family. Subsequent structural and
physicochemical analyses are conducted to evaluate the
potential antimicrobial properties of these proteins. Ad-
vanced tools such as AlphaFold 2 [25] or AlphaFold 3 [26]
can accurately predict protein structures, while features
such as cationicity and amphipathicity can be analyzed
using ExXPASy to complement the AMP characterization
[21].

A different strategy for molecular de-extinction em-
ploys machine learning (ML) models to identify and classi-
fy encrypted peptides (EPs) — protein fragments with
antimicrobial properties — from the proteomes of extant
and extinct organisms [1, 18, 27]. The panCleave ML
model, for example, applies a pan-protease cleavage site
classifier to conduct computational proteolysis, identifying
potential EPs within protein sequences [1]. This open-
source model achieved over 80% accuracy for proteases,
with at least 100 observations in the test set. Specifically,
for cysteine catalytic types, the average accuracy was
81.3%, based on 1,858 correct predictions out of 2,286
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observations, whereas for threonine catalytic types, the
accuracy was 34.6%, with 18 out of 52 observations pre-
dicted correctly [1]. Other genome mining tools, such as
ThioFinder [28], RODEO [29], and RiPPMiner-Genome [30],
have also been widely used to discover new AMPs in ex-
tant organisms [31].

Progress in this field is further demonstrated by the
development of the deep learning model APEX (Figure 2),
which has been used to mine all extinct organisms as
sources of antibiotics [18]. This state-of-the-art model
consists of a peptide sequence encoder coupled with
neural networks for predicting antimicrobial activity, ena-
bling the extraction and classification of peptide antibiot-
ics based on their potential Minimal Inhibitory Concentra-
tion (MIC) [18]. APEX achieved a significant Pearson corre-
lation (>0.3) for predicting species-specific antimicrobial
activity, showing correlations between predicted and ex-
perimentally validated activities for several strains, includ-
ing Escherichia coli strains AIC221, AIC222, ATCC 11775;
Acinetobacter baumannii ATCC 19606; Pseudomonas
aeruginosa strains PAO1 and PA14; and Enterococcus
faecium ATCC 700221. Predicting antibiotic activity with
advanced artificial intelligence like APEX (Figure 2) brings
us closer to mining effective candidates for novel antibi-
otic alternatives. The antimicrobial activity of these an-
cient compounds can potentially also be predicted using
various deep learning models, such as AMP-Bert [32] or
AMPIlify [33].

UNVEILING ANTIMICROBIAL PEPTIDES FROM EXTINCT
ORGANISMS

Natural AMPs and other peptide antibiotics can originate
from four main processes: (i) genome-encoded peptides
[21, 34], (i) cleavage via proteolysis [27, 35], (i) synthesis
by non-ribosomal means [36], and (iv) small open reading
frames (smORFs) [37, 38]. Due to the vast nature of ge-
nomic and proteomic databases, molecular de-extinction
of AMPs has thus far been driven by strategic exploration
to unveil antimicrobials encoded in the genome [21] or
encrypted within proteins [1, 18]. For instance, six B-
defensins were predicted through computational analysis
of genomes from extinct and critically endangered spe-
cies. This prediction was based on intrinsic disulfide bond-
ing patterns (Cys1-Cysb, Cys2-Cys4, and Cys3-Cys6), as
well as the characteristic structural features of B-defensins
[21], including three antiparallel B-strands and a right-
handed a-helix. Two defensins, Ad-AvBD5 and Ad-
AvBD10, were identified from Anomalopteryx didiformis,
the New Zealand moa that became extinct approximately
600 years ago [39]. Three B-defensins (Cs-AvBD1, Cs-
AvBD9, and Cs-AvBD10) were derived from Cyanopsitta
spixii, Spix's macaw, which is endemic to Brazil. Addition-
ally, one B-defensin was identified from Diceros bicornis
minor, a critically endangered subspecies of the black
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FIGURE 1 @ Workflow for identifying ancient antimicrobial peptides. Genome and proteome data serve as sources for mining ancient AMPs. This
mining can be performed using (i) machine learning (ML) methods to generate encrypted peptides (EPs), or (i) computational tools that identify de-
fensins by analyzing disulfide bond patterns. The activity of these ancient AMPs can be predicted using deep leaming (DL) models, and their struc-
tures can be elucidated through molecular dynamics simulations or circular dichroism. The predicted AMP activity can be validated through in vitro
and in vivo assays.-Figure created with BioRender.com.
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FIGURE 2 @ APEX Model Architecture. The APEX model combines recurrent and attention neural networks to analyze peptide sequences for antimicro-
bial prediction. The model first extracts physicochemical features of peptide sequences using the AAindex library. These features are processed through a
two-layer attention neural network (a: and az), enhancing global feature interactions and compressing the representation into a lower-dimensional format.
The output of this attention network is then processed by two separate recurrent neural networks (RNNs) (hs and hz): one predicts species-specific antimi-
crobial activity (01), and the other classifies the peptide as antimicrobial (AMP) or non-antimicrobial (non-AMP) (02). Figure created with BioRender.com.

rhinoceros. Ad-AvBDb5, Cs-AvBD1, and Cs-AvBD10 were
noted for their high stability in molecular dynamics
analyses, displaying cationic charges of +3, +7, and +2,
respectively [21].

Using machine learning to predict patterns of protein
cleavage into peptide fragments, we have detected en-
crypted peptides resulting from proteolysis in Homo sapi-
ens neanderthalensis (Neanderthals) and Homo sapiens
subsp. Denisova (Denisovans) [1]. Among the 69 archaic
protein fragments identified, six showed in vitro antimicro-
bial activity, four from Neanderthals and two from Den-
isovans [1]. The molecule PDB6I34D-ALQ29, a fragment
from Chain D of Neanderthal glycine decarboxylase, dis-
played broad-spectrum antimicrobial activity against both
Pseudomonas aeruginosa and Escherichia coli strains,
with MIC values ranging from 32 to 128 mmol.L™". This
archaic encrypted peptide (AEP) possesses a net charge
of +6 and an amphiphilicity index of 0.99. Conversely,
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compound AOA343EQH4-LAM11 (also known as neander-
thalin), an AEP with a net charge of 0 and an amphiphilici-
ty index of 0.63, demonstrated significant efficacy in pre-
clinical animal models by reducing bacterial loads by sev-
eral orders of magnitude against Acinetobacter baumannii.
It was observed that AEPs have lower net charge and
normalized hydrophobicity, more basic residues, and few-
er acidic residues and polar residues compared to modern
encrypted peptides (MEP) [1]. The differences in amino
acid composition led to distinct physicochemical traits in
AEPs, including lower amphiphilicity, a greater tendency
toward disordered conformations, and reduced aggrega-
tion.

Moreover, the deep learning model, APEX, has facili-
tated the identification of several ancient encrypted pep-
tides within the proteomes of extinct animals and plants
[18]. Species such as the New Zealand moa (Anomalop-
teryx didiformis), the South American giant sloth (Mylodon
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TABLE 1 @ Extinct peptides identified through molecular de-extinction.

o ) ) Amino Net
Extinction Species Name Peptides sequence )
acids charge
~600 years Anomalopteryx Ad-AvBD5 TRQDCESRGGFCSRGSCPLGITRIGICSLQDFCCRRKMGE 40 3
ago didiformis Ad-AVBD10 VSFADTEECRSQGNFCRPVSCPPVFSVSGSCYGGAMKCCKKEYGQ 45 1
Extinctin c it Cs-AvBD1 NKAQCHREKGFCALLKCPFPYVISGRCTKFTFCCKKGA 38 7 [21]2
anopsitta
the wild in y s ifii Cs-AvBD10 DPLFPDTTECKNQGNFCRAGTCPPTFAISGSCHGGLLRCCSKKISS 46 2
2000 P Cs-AvBD9 PAYSQVDADTAACRQNRGSCSFVECSSPMVNIGTCRSGKLKCCKXYV 47 3
PDB6134D-
ALQLCYRHNKRRKFFVDPRCHPQTIAVVQ 29 5
ALQ29
AOA384EON
) DLIERIQAD 9 2
~40,000 Homo  sapiens 4-DLI09
earsago  neanderthalensis  AOA343EQH
4 9 Q LAMVIPLWAGA 11 0
4-LAM11 (e
AOAB43EQH
NVKMKWQFEHTKPTPFLPTLITLTTLLLPISPFMLMIL 38 2
0-NVK38
AOA343AZS
) FMAEYTNIIMMNTLTTTIFLGTTYN 25 -1
~50,000 Homo  sapiens 4-FMA25
yearsago  subsp.'Denisova’  AOA0S2IB02 -
AYT3S AYTTWNILSSAGSFISLTAVMLMIFMIWEAFASKRKVL 38 2
) AWH62785.1-
1889 Aratricolor RLA27 RLATLQLWTINKITKQLMIPLNKPGHK 27 5
781,000 AQUIATS81- LHLKILKIIRLL 12 3
' ) LHL12
30,000 Elephas antiquus
AQU14158.1-
years ago IFLHLKILKIIRLL 14 3
IFL14
ABN79624.1-
CVLLFSQLPAVKARGTKHRIKWNRK 25 7
Equus quagga CVL25
1883 ;
boehmi ADNB88909.1-
RAYICRKKFLSLRKASIKLQSLVRMK 26 9
RAY26
Hesperelaea CED79820.1-
1875 ) KLLRKVLKETKKWVIKSVVFFKKIRK 26 10
palmeri KLL26
Hydrodamalis AKN52354.1-
1768 ) LYCRIYSLVRARGRRLTFRKNISK 24 8
gigas LYC24 (8]
~103,000 Lophiomys im-
) QYC36821.1-
to 42,000 hausi mare- HWIT6 HWITINTIKLSISLKI 16 2
years ago mortum
~6050- Mammutameri-  ABQ86189.1-
WMTIHALKLSLSFKL 15 2
5050 BCE canum WMT15
AWK29290.1-
WFHFNSKILLLTGL 14 1
~1.8 mil- WFH14
lionto . SMQ11516.1-
Mylodon darwinii KRKRGLKLATALSLNNKF 18 6
12,000 KRK18
years ago SMQ115616.1-
KIYKKLSTPPFTLNIRTLPKVKFPK 25 7
KIY25
Pinguinus im- ASB29243.1-
1952 ) KFILNFKIPISFK 13 3
pennis KFI13

@List of extinct B-defensins identified by software but not validated its activity experimentally.
® List of active AEPs identified by panCleave and validated experimentally.
¢ List of active AEPs identified by APEX and validated experimentally.
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darwinii), the giant elk (Megaloceros sp.), Grant's zebra
(Equus quagga boehmi), the woolly mammoth (Mammu-
thus primigenius), the straight-tusked elephant (Elephas
antiquus), the ancient sea cow (Hydrodamalis gigas), as
well as extinct plant species like Magnolia latahensis and
Hesperelaea palmeri, revealed peptide molecules with
excellent antimicrobial traits. These peptides exhibited
low MIC values against some ESKAPE pathogens: Entero-
coccus spp. Staphylococcus aureus, Klebsiella pneu-
moniae, A. baumannii, P. aeruginosa, and E. coli [18]. Test-
ing these encrypted peptides in two different preclinical
mouse models indicated that mammuthusin-2 (MEP), ele-
phasin-2 (AEP), and mylodonin-2 (AEP) possess high po-
tential for antibiotic and anti-infective efficacy. Additional-
ly, mammuthusin-2 exhibited slower degradation kinetics.
Notably, although the AEPs and MEPs identified through
APEX showed an atypical prevalence of low amphiphilicity
and uncharged polar residues, they were primarily charac-
terized by helical structures, resulting in more effective
membrane disruption [18]. These findings highlight the
potential of computational and artificial intelligence tools
in uncovering extinct peptides with antimicrobial proper-
ties (Table 1).

CONCLUSION

Just as the evolutionary loss of AMPs is evident [40], mi-
crobial resistance genes also impose significant fitness
costs on organisms due to their energy burdens, leading
to the eventual loss of some of these genes over time [41].
Molecular de-extinction thus emerges as an innovative
concept in drug discovery, offering the possibility of un-
covering ancient molecules that may exhibit unique
mechanisms of action or target sites not addressed by
contemporary antibiotics. Reintroducing these ancient
antimicrobials paves the way for exploring alternative
therapeutic approaches to combat contemporary drug-
resistant pathogens. Moreover, Al-driven molecular de-
extinction has the potential to enrich our understanding of
evolution, ecology, and biodiversity.
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