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ABSTRACTSulfur assimition and the biosynthesis of methionine, cysteine
and Sadenosymethionine (SAM) are critical tdife. Asa cofactor, SAM is re-
quired for the activity of most methyltrasferases (MTases) and asuch has
broad impact on diverse cellular proeses. Assigni function to MTases re-
mains a challenge however, as many MTasa® partially redundant, they
often have multiple cellular roles and these activities can be conditior
dependent To address theschallenges, we performed a systematic synttet
genetic anaysis of all pairwise MTase double mutations in normal and stre
conditions (16°C, 37°C, and Li€sulting in an unbiased comprehensive ovel
view of the complexity andplasticity of the methyltransferome. Based on this
network, we performedbiochemical amlysis of members of the histone H3K.
COMPASS complex and the gdpholipid methyltransferase OPI® reved a
new role for a phospholipid methyltransferase in mediatirtistone methyla-
tion (H3K4 which underscores a potential link between ligh homeostasisand
histone methylation. Our findings provide a valuable resoce to study me-
thyltransferase furction, the dynamics of the mthyltransferome, genetic
crosstalk betweenbiological processes anthe dynamics of the methyltrans-
feromein respon® to cellularstress.

INTRODUCTION
Sadenosyinethionine (SAM) is a universal cofactor found
in all brancheof life (e.g. viruses, plants, bacteria, yeast
and human) where it plays a critical role in the transfer of
methyl groups todiverse biomolecules, including DNA,
proteins and smalinolecules These substratesre in-
volved in numerous biological processes includaignd
transduction,chromatin remodelinggeneregulation, DNA
repair,and ageing[1]. Methyltransferasg(MTase)enzymes
transfer a methyl group fromSAMto their substrates,
forming Sadenosylhomocystem (SAH)which is further
metabolized to homocysteinea precursor formethioning
cysteine and glutathioneNot unexpectedlySAMdepend-
ent MTases are crucial foressential cellular fuctions and
when dysregulategdcan cause diseasEor example,ecent
work has shown that the DNA MTaspsotein MTases and
RNA MTases are directly involved in the epigenetic regula-
tion of gene expression during canceevelopment and
progression2].

Campared toother proteins that transfer high energy
metabolitessuch asinasesphosphatasesand acetylaes
MTases are uniquein the diversity of their substrates and
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alsoin their ability to target multiple atomsg.g.O, C, N, S
and halides).Thissubgrate flexibility, combined withthe
poor sequence conservatidn their activesite domains[3]
complicdes assgnment of funtion based onprimary se-
quence. Functional data is often useful for such characteri-
zation, but thefact thatthe majority of MTs ar@ot essen-
tial for viability in laboratory conditionsnd may share
overlapping function complicates heir chaacterization To
address this challenge,ensystematically generateMTase
double mutantsand analyzed their fitness in the absence
and presence oénvironmental stress.

Although the majority of yead¥ITases are at least par-
tially characterized(i.e. at the primary or secondary se-
quence level)between15-20%have no known functiofy,
5]. While traditional focusedapproachesare useful for
understandingindividual MTase, comprehensivepertur-
bation strategies will likely be required to understard
those MTases that areaon-essential and which lack orte
phenotypes due tgpotentially shared andcompensatory
mechanismsindeed, amodel ofone MTaseone substrate
is an oversimplificatiorthat is not supported by exper
mental evidenceand which comptates efforts to uncosr
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function. For example the human Euchromatic histone
lysine NMTase2 (EHMT2 catalyzesa specific methylation
of histone H3at lysineresidue 9yet the same enzymalso

methylatesnon-histone targetssuch a53[6, 7] Similary,
in plants,the OMT2 MTasemodifies structurally diverse
small moleculeg8]. Consistent with teir multiple roles,
MTases often contain distinct functional domainsyith at

least half ofall yeastMTases possessig both RNAbinding

domainsand lipid-binding motifg[5, 9].

Genomescale screensf doubledeletions have proved
powerful fortacklingthe inherent robustness of biological
systems[10], in reveaing phenotypes in partially redun-
dant systems and providing valuable insighinto gene
function, and genetic network architecture[11-14]. Fur-
thermore, the addition of external perturbationfl5] to
such genetically challenged cells can providdditional
insight into gene functionSynthetic Genetic Array (SGA)
technologyis a poverful tool for automathg constructon
of double mutants[11, 12]to allow the fithess ofeach
double mutant to be assessedy colony sizemeasure-
ments In SGA, @ouble mutant exhibiting fitness defects
greater tha or less than the expeted multiplicative effect
of the combined fitness of each single mutarffide nega-
tive and positive genetic interactions, respectively.

Here we quantify the genetic interactiongh Saccharomy-
ces cerevisiabetween SAMMTasesby constructing a ref-
erenceset comprised of all possible pairwis@ubleMTase
mutant strains. We quantify thedynamicsof these interac-
tions in responseto a variety of environmental stresson-
ditions (L6°C, 37°C, an@.25mM LIiC) selectedfrom a sur-
vey of abroader list of enviromental stress responsg46].
The resulting genetic interaction network regents the
first comprehensive view of the methyltransferome and

the dynamics in response to stress. Based on this network,

biochemical analysis of a genetic relationship observed

between members of the histone COMPASS complex and

the phospholipid MT Opi3erealed a novel role gbhos-
pholipid MTs in mediating histone methylation, indicating
that these two distinct MTs cooperate to affect fundamen-
tal biological processes. We highlighur key findings and
include examples of how the yeast methyltransfer®
network provides insight into MT function that can be lev-

eraged in more focused studies in other biological systems,

including human.

RESULTS

Construction ofMTasedouble mutants and evaluation of
their genetic interactions

To systematically assess genetic interactidostween
AdoMetdependentMTases inS. cerevisiaenve selected 94
MTasedeletion mutants(known and putative) andour
JmJdomaincontaining demethylasenutants (GIS1 RPH1,
JHD1,and JHD2. We also included eighessential RNA
MTase as los®f-function mutarts (ABD1 DIM1, GCD10,
GCD14NOP2,SPB1SWD2 TRMY constructedas DAmP
lossof-function alleles[17, 18] In total, our screen inter-
rogated MTasesnvolved indiverse biological processes
and substrate specificity including nucleic acids (tRNA,
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rRNA, mRNA, snRNA), proteins (histones, ribosomal pro-
teins, transcription factors, etc.), small molecules (lipids,
metaboliteg and severalwith unknown substrates(Figue

1A). To systematically assess genetic interactions between
MTases in S. cerevisigewe construced all possible pair-
wise double mutants fothe 94 MTases usin§GA technol-
ogy [11, 12, 14, 19, 20([Figure 1B. Geneticinteractions
were quantified byfitness of the MTasedouble mutant
strainsusing colony ge as a metd[21-23].

Qossing 81 KdhmarkedMTaseswith 94 Nakmarked
MTasesresulted ina matrix comprised 081 x 94 =7614
reciprocal and(control) single genetic pairs(Figure S1A
Consistentwith previous observationssingle mutant fit-
nessdefects have a large effect onS I O K

ed a greater number of gernie interactions(e.g. RSM22
and OPI3 compared to contrd (e.g. HIS3 (Fgure S1B)
[12]. Because the mated strains this matrix containthe
selectablemarkersNatMX and KanMXin the exactlysame
chromosomal locationsone canuse the resultng lethal
phenotype of a double mutant (i.e. the strains on the diag-
onal inthe matrix) in the presence of both selection drugs
(G418 and nourseothricings a phenotypeto check for
mutant strain accuracyTo decrease the rate of false posi-
tive scores forany MTasegenes located within 5&b of
each other, these gene paivgere ako filtered out (Figure
SI10) to avoid anypossiblegeneticlinkage (and failure to
segregate during meiogishat cauld confound our analysis
Because w found that the genetiprofiles of the recipro-
cal strains (N&tKarf vs KafiNaf) tend to correlate
strongy to each otherFigure SD), we used the reciprocal
fithessmeasuresto identify and removepotentially incor-
rect strainsprior to analysis.

To evaluate the reproduciliy of our genetic interac-
tion data we compared the scoreffom two independern
screens and found them highly similar €0.83) Figure
S2A. When we restricted the amparisonto only those
scores deemedsignificant (based on the score threshold
(Iscore|>2.5), the betweenexperiment correlation in-
creasedo r =0.92(p-value <1x16%). Because he majority
of MTasedouble mutant strains (4032/5148)were con-
structed asindependent(and reciprocal)}double-deletion
strains (NadtKark and Kafi-Nafd), the scores for these re-
ciprocal gene pairs were also compared. We found the
correlationof r =0.68, p-value <1x10%, |score| > 2.5 Fig-
ure S2B.

As a final benchmark, westimated our false discovery
rate by compaing the overlap of our genetic interactions
with publishedlargescale SGAtudies[11, 12]and found
significant overlap(r =049, p-value <0.003)Figure S2IC
After the renoval of genet interactions with opposite
signs, we compiled a high confidence dataset of&2@\er-
aged scores (see Materials and MethodBig(re 1§ To
evaluate theaccuracythesegenetic interaction scorg we
tested asubset of significant negativend positive scores
(threshold |score| >2.5) [22] usingserial dilutionspot as-
says (Figure 1D Figure S3 and high resolution liquid
growth assaygFigure $4). In total, using visual inspection
we estimated thatthe false positive rate for our screen
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FIGURE IConstruction of double MT mutants and evaluation of their genetic interactiof®) Classification of methyansferases by
function/predicted substrate(B) SGA procedure for double mutant generation and daltte OSa a Ay 3d | NBLINB &
plate used for the last step of selection of haploid doutiddetion mutant coloniess shown Each mutant is prest in four replicates.
Images are converted to pixels using Colony Imager software to obgtative colony sizes. Each plate contains three query str
marked with NatR (mtasek::NatMX) crossed to an array of Kamfarked mutants itasek::KanMX. (C) Distribution of all MT genetic
interactions; negative (blue), neutrélack) and positive (yellow); select double mutants outliers are labeled. Red outlines on eac
point signfy genetic interactions reported in previous stad[52]. (D) Validation of select negative genetic interactions by spot dilut
growth assayswith strain genotypes indicated.

was ~40% for negative genetic interactions and ~50% for that this systematic assessment of genetic interactions of
positive genetic interactions. yeast MTaseand their resulting fitheswill provide insight
Following the data processing and qualigntrol steps into the central rde of SAM homeostasis in the cell.
described abovéseealso Materials and Methods)we ob-
tained a final experimentalmatrix of 66 Kafi x 78 Nat
resistant Msedouble deletion strains, representing 5148

Geneticarchitecture of the yeast methyltransferome
The completemethyltransferomenetwork comprises2056

doublemutants Each row and colummepresent a genet-
ic interaction profie for a particular MTaseln this repre-
sentation, negative scoresare seen tooccur between
genesin the same pathway obetween thosethat share
the same function and conversely, positive scoresare
more likely to occur betweerphysically interacting -
teins in protein complexes Based onour use of strct

thresholds for data quality and reproducibility, we suggest
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high-confidence interactions Although the majority of
genetic interactios were neutral §8.3%, the methyltrans-
ferome network was enriched faignificant geetic inter-
actions ~11.8%(241 out of 205, |score| >2.5) compaed
to the ~1-2% observed for randomly selected double dele-
tion strains[11, 12] This enrichment is consisent with

other SGA studieshat focuson a specific pathwasyor

functionallyrelated geneq17, 24, 2%. Interestingly, there
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FIGURE Z5eneticarchitecture ofthe yeast methyltransfeome. (A) Frequency of higlconfidence positive and negative genetic intere
tions (|score| >2.5) across the methyltransferome network. Esseggales are labeled in red; * ifghtes slow growergB) Genetic inter-
action network ofthe yeast methyltransferme underthe standard growth condition (30°C). Each MT gene is represented as a node
network and significant genetic interactisy edges. Nodes are colored accordingtl® subdrate type. Edge width represents th
strength of the genetidnteracion score and edge color the interaction type (red negative, green positive).

is a prevalence opostive (alleviating)over negative (ag-
gravating) genetic interactions in the dataset(~1.5x en-
richment for positive interactionsin cortrast to the ~2x
enrichmentobservedfor negative interactions across the
entire genome[11, 12). MTases with greatest nuber of
geneticinteractions(i.e. those representng & K dzo a €
network) includedtwo MTasesinvolved n lipid homeosta-
sis(ERG@&nd OPI3, DIM1, anessentiarRNA MTand TGS
a sndRNA nucleolaMTase As expected, Masesof un-
known functions demonsttad the lowest number of ge-
netic interactions,consistent with their dearth oftheir
annotated phenotype the SGDv{ww.yeastgenome.org
(Figure 2A.

We next assessed thmethyltransferome genetic in-
teraction network for correlation withtheir reported sub-
strate specificity The architeaire of the MTasegenetic
interaction network, when \$ualized by substrate
accepting specificity (broadly classified as histone, protein,
ribosomal, tRNA, rRNA, other nucleada small molecules,
and unknown) Figure 2B revealed genetidnteractions
(both positive and negative) both betwaeand within the
substratebased clusterdn particular, we found the strong
negative interactionsannecting different substratacting

MTases, suggesting that the functions for these MTases are

not as categorical agheir annotations might suggest. Ra-
ther, these unexpeted betweencluster interactions likely
reflect their capacities to buffer each oth@igure B). For
example, the nucldar snRNA/snoRNMTasesTGSlex-
hibited strong negative interactions with the esgial pro-
tein MTaseSWD2 Consistentwith this obsevation, Swd2
is known to bea subunit ofthe cleavage and polyadenyla-

OPEN ACCEgsvww.microbialccom 359

tion factor complexandi 2 LJ & | NR{d
formation [26]. In another example, th arginineMTase
HSL7showed strong negativegenetic interactions with
severalmembersof the evolutionarily conservedhistone
H3K3 MTaseéQOMPAS complex including SDC1, SWD3,

A YSWDIKafid BRE2 This observation suggests biological

interaction between thes crucial reguleors of transcrip-
tional reguhtion and theHSL7arginine MTase in cells de-
leted for these genegFigure 2B. Notably, he comple-
menting human homolog oHSL7 PRMT5also supports a
link to transcription[27, 28] These observationsuggest
that the high irterconnectednes®f the yeast methyltrans-
ferome genetic networkis not restricted by MTase
substrate relationships anthat the MTase networldis-
plays unanticipategbetweencluster relationships.

It iswell-established that genes encodipgoteins that
act in the same biological process tenddbare the same
genetic interactions[11, 12] Thisfunctionalrelatedness is
apparent in the methyltransferoméollowing hierarchical
clustering ofMTasegeretic interaction scoreg(Figure S5A
Forexample, we foundtriking patterns of genetic interac-
tions between MTase membersf the COMPASS mmplex
[29], with many exhibitingstrong positive interactionsAn
additional robust predctor of shared function is theorre-
lation between genetic profilesCorrehtion of MTase dou-
ble-mutant fitness profiles genét profiles evealed that
the yeastmethyltransferomehas a modulastructure (Fig-
ure 3A). For example, similar tthat observedfor score
based clustering, correlatiebased clustering demonstrat-
ed that COMPASS compleembers(SWD1, SWD3, SET1,
SDC1and BREZ clustered togetheras their patterns of
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FIGURE 3Genadic architecture ofthe yeast methyltransferome.(A) Correlatiorbased hierarchical cluster analysis. Eagv/column
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genetic interactions are muclmore similar to each other
versusother MTases.For example, thecorrelation of the
genetic profile oswdIlk mutant and swd is quite high i
=0.83 (Figure3B).

Although we faind extensive evidence for between

cluster genetic interactions, the known (or putative) sub-

strates for each MTase were also reflected in #rehitec-
ture of the methyltransferome.Spedically, we found en-
richment for gene pairs that tend tact on simila sub-

strate types among the MTases with similar genetic pro-

test). Correlation-based clustering revealed that lipMTa-
ses(OPI3, CHQZcofactorMTaseMET land MHTL; DPH5
and NNTJ and protein MTases(RKM3and DOT1 COM-
PASSall clustered together(Figure 3Q. Thesegene pairs
were also significantly enriched f@ostive genetic inter-
actions (score >2.5-value <1x103 hypergeometrt test)

In generalwe noted a slight positivecorrelation between
the correlation coefficient andthe genetic interaction
scores betweemmost MTase genepairs (r = 0.27, p-value
<1x10%¥) (Figure 6B). However, here arenotable excep-

files ¢ >0.5) (32% of highly similar gene pairs (235) vs. 28% tions to this trend For example,the phospholipidMTases

for all gene pairs (3160p-value <0.016hypergeometric
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OPI3and CHO2sharesimilar genetic profilesr (=0.64) yet
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they manifesta strong negative genetic interaction (score <
-30). Thisfinding is consistent with negative genetic inter-
actionsoccurringbetween genes in theame pathwayand
with the observation thaODPI3acts directly downstream of
CHO2n the yeastphospholipid biosynthdic pathway

Relating methyltransferome genetic interactiors with
physical interactiors

In addition to acting in the same biological patay, genes
with similar genetic interactioprofilesenrichedfor strong
positive interactionsoften physically interacf17, 33. In-
deed, in our dtaset genes of the COMPASS com(BHRE2,
SDC1,SET1,SWD1, SWD3the tRNA MTase complex
(GCD14and GCD1) and two members of the 90S pre
ribosome complexNOP2 DIMJ) follow this pattern Over-
all, in our screen we found that the MTapairs encoding
physically interacting proteins have similar genetic profiles
(r>0.5) nore frequently than all inteogated gee pairs
(Figure 4A. We also found that these physically interacting
gene pairgnanifestsignificant positive and negative scores
more often than all tested gene pairkigure 4B. In total,

19 out of 54 gene pairs8%%)encoding MTases kavn to
physicaly interact exhibit significant genetimteractionsin
our dataset Furthermore, 7.8% of all MTase gene pairs
with significant genetic interaction scores encode for the
proteins that associate physically (versti®% fora ran-
dom set of non-essential gends suggesting that the me-
thyltransferome is enrichedor members tha physically
interact. It is important to notethat despite this enrich-
ment for physical interactorghe majority of genetic inter-
actions (bothpositive and negative) amgnMTaseslo not
occur among physically interacting proteinsuggesing
that the maprity of these genetic interactions represent
betweenpathway functional relationshipsersus within-
complex interactionslndeed, onsistent wih other studies
on gene/prdein families, ve found that gene pairs com-

OPEN ACCEgsvww.microbialccom 361

prising an essential gene and encodinggbysically inter-
acting proteins show a lack of correlation and demonstrate
negative genetic interactions relative to the gene pairs
composedof only nonessential gend&igure 4¢[21, 30].

For example, in the methyansferome two of four gene
pairs with significant negative genetic interaction had

one essential geneSWD2or NOP2 \ersusO of 14 gene
pairs with positive geneticiteractions.One interpretation

for these observations is that complexes containing essen-
tial components are more vulndoée to additional genetic
perturbation. The fact that we can detecsuch patterns
that were previouslydetected in larger, nontargeted ge-
nome-wide studies validates the predictivenature of our
dataset.

Plasticity of the mehyltransferome in environmental
stress

Cells exposed to stress maintain their homeostasis, in part,
by alteing their transcription, translation and signaling
pathways[16]. Giventhat certain genetic interactions are
condition-dependent we and othes have shown thage-
netic interaction networks can be stress specificand that
the patterns ofstrain sensitivityin the face ofsuch stress-
ors can reeal details of each response pathwfp, 31,
32]. To evaluate theenvironmentaldependence ofthe
yeast methyltransferomenetwork we quantfied the fit-
ness ofall digenicMTasemutantsin three environmental
stressconditions: 1) 16°C,2) 37°C and3) 0.25 mM LiCl
While the proportion of the significant positive and nega-
tive genetic interactions (|score| >=8) observedin the
methyltransfepme stress networks wer similar to the
~25% observed in the°Creference condion (Figure 54,
we found stressspecific genetidnteractions (Figure S6)
For example, 106 significant positive interactiodesntified
at 16°C(~75%)were not detected irthe reference sample
(Hgure 5B. The stresspecific gene interactions were rep-
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actions (|score| >2.5) between 30°C and the indicated stress condi{iGhEnrichmen for genetic interactions between gene pairs |

substrate type for stress conditions.

resented by particular substrateype MTasesKigure5Q.
For example, the 162@nd LiCkpecific genetic interaction
datasets were enrichedor unknown MTases p{value
<0.003and p-value <0.05, rggectively) and for small mole-
cule MTasesptvalue <0.05)In cortrast, the 37°Gspecific
interacting gene pas were enriched for tRNA and riboso-
mal protein MTasespfvalue <0.02 andcp-value <0.011),
with histone MTases being substally underrepresented
(p-value <4.8x19). Furthermore, rRNA MTases were un-
derrepresented in both Li€and 37°Cspecific datasets.

A coreMTasenetwork

Despite the observed changes in the genetic interactions
between stress conditions and the referea condition,
certain gnetic interactions were consistent across aih-
ditions. On average,~25% ofsignifiant negative genetic
interactions (either positive or negative) were shared be-
tween any single stress network @rthe reference, with
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the smallestoverlap observed foriCl positive interactions
(19%) Figure 6A). We usedthese data to define a core,
a 02 y & S NIJ Srietivorkb B4y I8 Tiagde Qene pairésig-
nificant in at least three of the four conditions
(|score|>2.5). Ths setincludedsmall molecud, lipid, RNA,
protein, histone and uncharacterizedMTases The core
MTase netwok was significantly enriched folipid and
histone MTases [f-value <0.002, hypergeometric test)
compared to all significant gene pa{fSgue 6B.

This core MTas@etwork hidhlights genetic links be-
tween diverseMTase coordinatedbiological processes and
basal functional architecturef the methyltransferome. In
this network, rodes are represented by genes and edges
connect gene pairs with genetic interactiortdighly inter-
conrected nodesform distinct clustersor hubs several of
which were enriched for biological processEsr example,
in our network, hubs inclded specific mirwise interactions
between: 1) lipid MAsesCHO2 ERGBSOPI32) tRNA MTa-
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FIGURE 6A core methyltransferase network(A) Venn diagram of the shared signifitanteractions between all four conditions (30°¢
16°C, 37°C or LiC{B) The core methyltransferase genetic network shared by at least three of the four conditions tested. Red anc
edges denote negative and positive genetic interactions, respdgtikae width represents average genetic interaction strength. Nt
color represents biological substrate; purple (histone), green (RNA), yellow (small molecule), red (lipid), orange (unknown) gmdatic
molecule). Distinct groups were identified blystering edge betweenness.

sesTRM1 TRM11NCL1ABP14 3) small molecule Mases
MHT1, COQ5TMT1land 4 histone MTase8RE2, SDC1,
SET1, SET2, SHG1, SWD1, SWD3, R#itsin the net-
work with higk @& 6 S ¢ S(& wigasue 20 how im-
portant a node $ in a network serve as bridgethat con-
nect these hubsand include OPI3, COQIRVM1, SET2and
SWD3 Theseedgessuggestlinks between the biological
processes represented by tlwusterssuggestinghat they
mayact tobuffer each other

One notable fature of the core MTase network is that
lipid-histone and lipd-small moleculeMTases are biologi-
caly linked and that alterations in one can impact the oth-
er. This feature of oudataset is consistentvith published
observationgthat genes involved in suir and phospholip-
id metabolism are coordinately regulateBy way of illus-
tration, the MTasesCho2 and Opi8omprise key elements
of phospholipid biosynthetic pathwayThese twoMTases
are also major consumers of cellular SAM pools aiftdis
known thatsufficient flux through this pathwais required
to generatethe required levels oBAH for proper regula-
tion of sulfur amino acid biosynthetic pathwaj33, 34]
The genetic inteactions we observe bet@en Cho2 and
Opi3 reflect the interplay between thegmthways.In ad-
dition, the transcriptional regulators of sulfyMet4) and
phospholpid (Opil) metabolic pathwaysact in concert to
maintain cellular levels of SAN3].
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The genetic interactionbetween the histane and lipid
clustersin our networkin agreement with several high
throughput studies[12, 24 35]. Interestingly, a recent
study demonstrated choZh deletion strainsaccumulate
SAM,and in conditions requiring methionine, lead to the
hypermethylation of histones suggestingthat histone
MTases mawct to reduceSAM levelsOur results suggest
a similar crosstalland, taken togetter, these studies un-
derscore the importace of continued work on theegula-
tion of intracellular SAM:SAH ras@nd the importance of
coordination ofsulfur metabolism and SANWTase path-
ways.

The COMPASS complex remodels in stress conditions
Although the bological modules of functionallyelated
genesare typically conserved among distantly related spe-
cies and across conditions, it halsobeen shown that the
gendtic wiring is reprogrammed in response $tress[31,
36]. In our screenthe core COMPASS cplex members
(SET1, SDCEWD1, SWD2and SWD3 [37] exhibited
strong positive genetic interactionand highly correlated
genetic profiles inthe reference condition (3C°C) (Figure
3A) and to a lesser extenin the 16°C and 37C stress con-
ditions. In LiClhowever, only a subset of subunits of the
COMPASS wengresent, and with the exception SWD1
and SWD3 their genetic interactions were not consesd
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HGURE 7ExploringCOMPASS arghospholipid MT connectio. (A) Genetic interactions among COMPASS MTSCGRIB.Y ellow; positi-
ve genetic interaction, cyan; negative genetic interact{@) Genetic interactions among COMPASS MTs and other genes in the four
conditions.Yellow postive genetic interactioncyan; negative genetic interactioC) Overexpression oDPI3rescles the druginduced

fitness defecopign Ay G KS

LINEca & §hédSian thghitcal lprob&. &ybwth of wiltype, opidn

Fogiy 2 &S NEgORMB|.

without drug (left panel) and with drug (right panel). Growth is measured by as O.D88&)yas function of time (hrs)eeaxis).(D) OPI3
is important for histone methylation. Levels of-thethylated H3K4 and H3K36 in the indicated strairg @mig conditions(E)Levels of di

vySaketl SR Iy R

l oYn

(Figure7A). This observation suggesthat COMPASS MTa-
ses rearrange their genetic interactions in resperto ths
stress.In addition, in the reference conition (30°C) COM-
PASS componenBRE2, SDC1 and SWBxhibited nega-
tive genetic interactions ith the phoghalipid MTaseOPI3
(Figure 7A), while at 16Cthey did not, suggesing that
some MTasegenetic nteractionsin COMPAS&re stress
responsive(Figure 7A and Figure 7B Additionally, their
genetic profiles were not similar (i.they showed lowcor-
relation), suggestinghese MTases function independently.
In particular,in LiClstress conditionshere wasa substan-
tial loss of positive interactianwithin the complexin the

I oYT bA pish Y OKPpproped OS £

Ay NBalLkryasS G2 o.

Exploring theconnection between COMPASS and phos-
pholipid MTase

To furtherexplore the link betweemphospholipid anchis-
tone MTase observed in our datasetwe useda opi3n
specificchemical probeuncovered inour largescale ge-
nomewide screeimg effort [38] (SGTC_2231(Figure SB).
This compound(5E)5-[(4-hydroxyphenylnethylidene}3-
prop-2-ynyt1,3-thiazolidine2,4-dione; PubChem
CID:228541) induced drug-sensitivity in the opi3n dele-
tion strain suggesting thaOpi3 is required to resist the
effects of this compoundSpecificallyi) the opi3n deletion
strain exhibiteda druginduced fitness defect anii) dose

stress conditions accompanied by loss of the COMPASS dependentoverexpression of OpiBicreased resistance to

cluster in the heanap (Figure S7). At 37°C andin LiCl the
genetic interaction profiles of the majority of COMPASS
componentsclugered with SETZhistone lysine K3MTa-
se) andthe phospholipidMTaseCHO2 suggesting condi-
tion-dependent functional link between these enzymes
under these conditions These observations indicate that
COMPASB a dynanic complexthat remodels inresporse
to environmental stres.
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this compouwnd (FHgure 7C) encouraging our efforts to &s
compound 2241as achemicalprobe ofthe OPB pathway
function.

We fourd that treatment of wildtype cells as well as
cells with altered Opi3 gene doseith compound 2241
resulted ina dosedependentreductionof histone methyl-
ation (H3K4li and H3K36)Figure 7D) as assessed by im-
munoblot with methylationspecific histone H3rdibodies
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