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ABSTRACT  Autophagy is a catabolic pathway with multifaceted 
roles in cellular homeostasis. This process is also involved in the 
antiviral response at multiple levels, including the direct elimination 
of intruding viruses (virophagy), the presentation of viral antigens, 
the fitness of immune cells, and the inhibition of excessive inflam-
matory reactions. In line with its central role in immunity, viruses 
have evolved mechanisms to interfere with or to evade the au-
tophagic process, and in some cases, even to harness autophagy or 
constituents of the autophagic machinery for their replication. Giv-
en the devastating consequences of the current COVID-19 pandem-
ic, the question arises whether manipulating autophagy might be an 
expedient approach to fight the novel coronavirus SARS-CoV-2. In 
this piece, we provide a short overview of the evidence linking au-
tophagy to coronaviruses and discuss whether such links may pro-
vide actionable targets for therapeutic interventions. 
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INTRODUCTION 
The ongoing outbreak of the respiratory disease COVID-19 
(Coronavirus Disease 2019) is endangering individuals, 
governments and societies around the world. Indeed, this 
pandemic has unprecedented global consequences at the 
economic and social levels as it challenges the medical and 
research communities. The first case of COVID-19 was re-
ported in December 2019 in Wuhan (China) [1] and, de-
spite increasingly drastic efforts to contain the disease, the 

infection rapidly spread across the planet, leading the 
WHO to declare it, first, a global health emergency (in Jan-
uary 2020) and eventually a pandemic (on March 11, 2020) 
[2, 3]. As of April 30th 2020, more than 200 countries and 
territories have reported COVID-19 cases with a total of 
over three million confirmed cases and more than 220.000 
confirmed deaths [4]. In the current absence of effective 
treatments and vaccines, these numbers will continue to 
grow inexorably. The main clinical features of COVID-19 
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Abbreviations: 
CoV – coronavirus; COVID-19 – Coronavirus 
Disease 2019; DMV – double membrane vesicle; 
hCoV – human pathogenic CoV; HIV – human 
immunodeficiency virus; HSV – herpes simplex 
virus; LIR – LC3-interacting region; MERS – Middle 
East respiratory syndrome; MHC – major 
histocompatibility complex; MHV – mouse 
hepatitis virus; PAMP – pathogen-associated 
molecular pattern; PEDV – porcine epidemic 
diarrhea virus; PRR – pattern recognition 
receptor; SARS – severe acute respiratory 
syndrome; TGEV – transmissible gastroenteritis 
virus; UBD – ubiquitin-binding domain. 
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(fever, dry cough, pneumonia) manifest after an average 
incubation period of approximately 5 days [5, 6] with se-
vere cases advancing towards severe acute respiratory 
syndrome (SARS) [7–9]. COVID-19 was quickly shown to be 
caused by a novel coronavirus (CoV) that was named SARS-
CoV-2 [7, 10].  

SARS-CoV-2 is structurally related to the members of 
the Coronaviridae family in the order Nidovirales [10, 11]. 
CoVs are enveloped viruses with a single-strand, positive-
sense RNA genome and are separated into four genera 
according to their genome characteristics: α-CoV, β-CoV,  
γ-CoV, and δ-CoV [12, 13]. Until the emergence of COVID-
19, six human pathogenic CoVs (hCoVs) had been identi-
fied: four non-SARS-like hCoVs (HCoV 229E, NL63, OC43, 
and HKU1), which do not cause major (fatal) epidemics, 
and two SARS-like hCoVs (SARS-CoV and Middle East res-
piratory syndrome coronavirus MERS-CoV) [14]. Both 
SARS-like hCoVs, which belong to the β-CoV genus, have 
already caused major outbreaks and health emergencies in 
China (SARS-CoV, 2002-2003) as well as in the Middle East 
(MERS-CoV, 2012) [15]. The novel SARS-CoV-2 increases 
the number of known hCoVs to seven, all of which have a 
zoonotic origin, meaning that they originate from verte-
brate animals (possibly bats for SARS-CoV-2) and have 
reached humans via interspecies transmission [16].  

 

AUTOPHAGY AS A PROTECTIVE CATABOLIC PROCESS 
Given the devastating scenario that COVID-19 has already 
generated, a multitude of potential approaches against 
SARS-CoV-2 are currently being conceived. In that sense, 
we think that the manipulation of autophagy might be 
worth exploring. Macroautophagy (hereafter referring to 
autophagy) is an intracellular catabolic mechanism that 
regulates the elimination of unwanted, superfluous or de-
fective cell components [17]. In this process, the targeted 
molecules/organelles are enclosed in double-membrane 
vesicles called autophagosomes, which eventually fuse 
with lysosomes for degradation of the delivered contents. 
This process is induced upon energy deprivation and/or 
physical activity in order to secure sufficient nutrient sup-
ply and is thus often referred to as a cellular self-digestion 
system. The compounds resulting from lysosomal degrada-
tion (e.g., fatty acids, amino acids) may be released into 
the cytoplasm for the generation of new macromolecules 
and/or bioenergetics reactions. Autophagy, therefore, rep-
resents a recycling mechanism under circumstances of low 
resource availability [17].  

The digestion of damaged and thus potentially detri-
mental cargo also increases the fitness at the cellular and 
consequently at the organismal level. Accordingly, the in-
duction of autophagy by dietary interventions (e.g., caloric 
restriction, fasting regimens), behavioral cues (e.g., exer-
cise) or pharmacological agents (e.g., caloric restriction 
mimetics like spermidine, rapamycin, resveratrol or specific 
chalcones [18–22]) has been consistently linked to benefi-
cial effects on health [23]. In turn, reduced autophagic 
capacity is connected to aging progression and a number of 

pathologies including cardiovascular disease, cancer and 
neurogeneration [24]. 

The autophagic machinery can retrieve its cargo in 
bulk, but it can also selectively target distinct intracellular 
components and organelles via specific adapter proteins 
that interact with both the individual substrates and the 
autophagosomes [25]. Specifically, these autophagy adap-
tors (e.g., p62/SQSTM1, optineurin) contain both a ubiqui-
tin-binding domain (UBD) and an LC3-interacting region 
(LIR). The UBD recognizes ubiquitin tags decorating the 
specific target, while the LIR allows binding of LC3 proteins 
attached to nascent phagophores, the structures that 
eventually close to form autophagosomes [26]. According-
ly, autophagic subforms have been defined that describe, 
for example, the specific removal of damaged mitochon-
dria (mitophagy), the disposal of protein aggregates (ag-
grephagy), the digestion of lipid droplets (lipophagy), etc 
[27].  

Yet another selective autophagy subroutine is xenoph-
agy, the specialized elimination of intracellular pathogens, 
including fungi, bacteria and viruses [28]. The xenophagic 
disposal of viruses (sometimes also termed virophagy) has 
been described for different viral pathogens, including hu-
man immunodeficiency virus-1 (HIV-1) [29, 30] and herpes 
simplex virus-1 (HSV-1) [31, 32]. However, many viruses 
(including HIV-1 and HSV-1) and other pathogens have also 
evolved strategies to escape or inhibit autophagy and 
sometimes even to manipulate the autophagic machinery 
for their replicative benefit [33]. Thus, autophagy emerges 
as a crucial element in the evolutionary-driven arms race of 
host against pathogen. This further underlines the signifi-
cance of xenophagy as a central antimicrobial mechanism, 
but also limits the potential of autophagy induction to fight 
infections. 

 

CORONAVIRUSES AND AUTOPHAGY 
The question whether autophagy induction might be bene-
ficial to specifically counteract SARS-CoV-2 infection cannot 
be answered at this point. However, the existing data on 
other CoVs suggest that – despite some conflicting results 
– autophagy induction might be a valid approach that 
should be subjected to further evaluation. The autophagy-
lysosomal system does indeed seem to play a central role 
during the infection with different CoVs, including SARS-
CoVs [34–37]. Nevertheless, the diverse putative roles of 
autophagy during viral infection [38] require that two op-
posite aspects be covered by this overview: (i) Is there evi-
dence for autophagy being used for the survival or replica-
tion of CoVs (proviral effects)? (ii) Can autophagy induction 
reduce cellular infection, and does the virus actively inhibit 
autophagy (suggesting antiviral effects for autophagy)? Of 
note, cellular manipulation of autophagic levels during 
infection may also reflect desperate attempts of the cell to 
reestablish homeostasis, either through restriction of viral 
entry by actively shunting endocytosis/endosomal traffick-
ing (possibly resulting in autophagy reduction as a side-
effect) [39] or to counteract virally induced cell death by 
increasing cytoprotective autophagy. As a third major as-
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pect, (iii) the autophagic effects on antiviral immunity must 
be taken into consideration. Over the last 15 years, a num-
ber of studies have addressed these issues in the context 
of the “old” CoVs, those that historically precede SARS-
CoV-2.  
 
Can autophagy be highjacked for CoV replication? 
CoVs rely on the formation of replication complexes at 
double membrane vesicles (DMVs), where viral genome 
replication and transcription occurs [40, 41]. As it may be at 
least partly the case for autophagosomes, DMVs probably 
depend on ER-derived membranes for their generation [40, 
42]. Therefore, it was initially suspected that CoVs might 
usurp the autophagosomal machinery for DMV formation. 
In fact, an early study using ATG5 knockout cells implied 
that autophagy may promote mouse hepatitis virus (MHV) 
replication via formation of DMVs [43]. In a follow-up 
work, the same authors reported the co-localization of 
specific replication proteins (nsp2, nsp3, nsp8) with endog-
enous LC3, suggesting a connection between replication 
and autophagosome formation [44]. Other studies report-
ed that the porcine CoVs transmissible gastroenteritis virus 
(TGEV) [45] and porcine epidemic diarrhea virus (PEDV) 
[46] may induce autophagy to promote replication. How-
ever, the link between autophagy and replication of CoVs 
has been challenged by a number of different reports, 
showing that deletion of the essential autophagy genes 
ATG5 or ATG7 does not affect the replication of MHV [47, 
48] or SARS-CoV [49]. Furthermore, the co-localization of 
LC3 (or GFP-LC3) with the SARS-CoV RNA replication com-
plex could not be confirmed [50]. A study using pharmaco-
logical induction (rapamycin) or genetic inhibition (knock-
down of LC3, ATG5, or ATG7) of autophagy even demon-
strated that TGEV replication is negatively regulated by 
autophagy [51]. In addition, rapamycin reduced infectivity 
of PEDV [52]. Altogether, although some conflicting results 
exist, autophagy may not be primarily engaged in promot-
ing CoV replication.  

However, single components of the autophagic ma-
chinery may be hijacked independently of their activity in 
autophagic processing. Non-lipidated LC3, for instance, is 
used for membrane derivation for DMVs in CoVs, and 
downregulation of LC3 but not inactivation of autophagy, 
counteracts CoV infection [47]. Notably, some components 
of the canonical autophagy machinery can target invading 
pathogens by promoting phagosome-to-lysosome fusion 
[53]. During LC3-associated phagocytosis (LAP), for in-
stance, which does not involve sequestration in autopha-
gosomes, LC3 is recruited to phagosome membranes to 
facilitate lysosomal fusion and degradation [54]. In addi-
tion, it has been proposed that non-canonical autophagy 
and intruding viruses, both of which can be inhibited by the 
fungal compound brefeldin A, may converge in the retriev-
al of membranes [55]. Non-canonical autophagy includes 
ATG5- and ATG7-independent as well as Beclin-1-
independent autophagy [56, 57]. Altogether, these obser-
vations add further layers of possible modulation of au-
tophagic processes in trying to attenuate viral infection 
(Figure 1). 

Does autophagy counteract CoV infection? 
Intriguingly, a body of evidence indicates that CoVs may 
actually inhibit autophagy, which in turn teleologically sug-
gests an antiviral role for autophagy. Accordingly, a num-
ber of studies have shown that increasing autophagic ca-
pacity may be beneficial against infection (Figure 1). A 
temporal kinome analysis of MERS-CoV-infected hepato-
cytes demonstrated selective activation of the ERK/MAPK 
and PI3K/AKT/mTOR signaling responses, both of which 
have inhibitory effects on autophagy [58]. Accordingly, 
pharmacological inhibition of these pathways was able to 
inhibit MERS-CoV infection [58]. Moreover, although one 
of the central replicase proteins (nsp6) of avian infectious 
bronchitis virus (IBV) seems to promote autophagosome 
formation at the omegasome level [59], nsp6 also limits 
further autophagosomal expansion [60], thus compromis-
ing autophagic delivery of viral components to lysosomes. 
Interestingly, nsp6 is also present in other CoVs, including 
SARS-CoV-2 [61].  

Overexpression of the protease PLP2 of SARS-CoV and 
MERS-CoV in different cell lines inhibited autophagosome-
lysosome fusion and autophagic flux [62]. A recent report 
corroborated the autophagy-inhibitory activity of MERS-
CoV and showed that induction of autophagy can reduce 
MERS-CoV replication [37]. Specifically, the authors found 
that pharmacological inhibition of the ubiquitin ligase SKP2 
increases the levels of Beclin-1, a central regulator of 
phagophore formation [37]. SKP2 executes lysine-48-linked 
poly-ubiquitination of Beclin-1, targeting it for proteasomal 
degradation, the inhibition of which promoted autophagy 
and efficiently reduced MERS-CoV replication. This work 
also shows that ectopic expression of at least three viral 
proteins (nsp6, p4b, p5) restricts autophagy [37]. While 
nsp6 may limit autophagosome expansion (see above), p4b 
inhibits RNAse L activation (a pro-autophagic event [63]), 
and p5 has been connected to the blockage of IFN-β induc-
tion [63, 64], which itself may be linked to autophagy [65]. 
Accordingly, deletion of p4b or p5 resulted in reduced 
MERS-CoV growth, although disputing some previous ob-
servations, which the authors explain by methodological 
differences [37]. Thus, the group-specific accessory pro-
teins, which by definition are not essential for viral replica-
tion but are involved in the modulation of host cells and 
immune evasion [66, 67], may represent targets for reduc-
ing the autophagy-inhibitory effects of CoVs. 

The FDA-approved anti-malarial drugs chloroquine and 
hydroxychloroquine have been suggested to be repur-
posed for the treatment of COVID-19 [68–70], but this re-
mains widely controversial [71–73]. Although chloroquine 
is a lysosomotropic agent that blocks autophagic degrada-
tion, possibly by impairing autophagosome fusion with 
lysosomes [74], the putative effects on autophagy may not 
be necessarily causal for the antiviral activity. In fact, endo-
somal acidification after endocytosis is critical for SARS-
CoV-2 entry [75], and chloroquine inhibits this acidification 
[76]. In addition, chloroquine limits terminal glycosylation 
of the metallopeptidase ACE2, the functional receptor for 
SARS-CoV and SARS-CoV-2 cell entry [68, 75, 77]. Non-
glycosylated ACE2 seems to interact less efficiently with 
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the SARS-CoV spike protein, thus reducing viral entry [78]. 
These modes of action would target the virus upstream of 
autophagy, making it unlikely that autophagy modulation 
contributes to the outcome of chloroquine treatment at 
that point. Additionally, chloroquine has been shown to 
induce autophagy-independent effects, for instance, Golgi 
disorganization [74] and pulmonary vasodilation [79] that 
may contribute to its controversial clinical activity. Interest-
ingly, the net effects on autophagy may differ depending 
on parameters like cell type and dose: for instance, chloro-
quine-mediated lysosomal stress may promote the nuclear 
translocation of the pro-autophagic transcription factors 
TFEB and TFE3 [80, 81]. Altogether, further clinical work 
must clarify if chloroquine and hydroxychloroquine have 
major effects on COVID-19 and at which (early?) phase of 
the disease these drugs should be administered. If chloro-
quine or its derivative turned out to be clinically useful 
against COVID-19, it will be important to understand to 
which extent such effects are connected to the modulation 
of autophagy. 

 

Indeed, repurposing of known (especially currently 
FDA-approved) drugs might offer a welcome shortcut to 
rapidly developing treatments against COVID-19. Obvious-
ly, even in the present period of desperate search for 
pharmacological treatments, the efficacy (and lack of side-
effects) of anti-COVID-19 treatments needs to be proven 
by clinical studies subjected to rigorous scientific scrutiny. 
While data regarding such attempts remain preliminary at 
this stage, several currently available preprints allow the 
speculation of autophagy as a possible druggable target. 
For instance, a recent preprint mapping the SARS-CoV-2 
interactome in human host cells identifies several host 
factors connected to autophagy [82]. Amongst others, the 
authors find viral-human interactions with proteins directly 
modulated by mammalian target of rapamycin complex 1 
(mTORC1) [82], a master regulator of cell proliferation and 
autophagy known to be affected by other viruses [83, 84].  

Intriguingly, another recent preprint presents in vitro 
data showing that SARS-CoV-2 infection restricts autopha-
gy and that, in turn, pro-autophagic compounds - including 
spermidine - may inhibit viral propagation [85]. Admittedly, 

FIGURE 1: Possible protective mechanisms of autophagy against coronaviruses. Autophagy may counteract viral infection by executing and 
supporting different antiviral pathways in infected host cells as well as by promoting the function and survival of immune cells. Therefore, an 
increase in autophagic flux may be effective against coronaviruses (CoVs). Accordingly, CoVs may have developed strategies to limit cellular 
and organismal immunity by preventing autophagy. 
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spermidine has a plethora of physiological functions, in-
cluding regulation of RNA-to-protein translation, as well as 
amelioration of RNA and DNA stability [86], and these ef-
fects need further investigation, specifically in relation with 
a possible autophagy induction. In fact, the role of spermi-
dine during infection may be pleiotropic. On the one hand, 
spermidine is an autophagy inducer [18, 87–90] and may 
promote viral xenophagy; also, it may contribute to endo-
somal pH buffering [91] and thus block viral entry. On the 
other hand, polyamines are essential for viral replication 
[92], and the overexpression of spermidine/spermine-N(1)-
acetyltransferase by the host, which drives spermidine 
(and spermine) depletion, is a common cellular response to 
viral infections, including that of RNA viruses [93]. This 
underlines once more that any pharmacological candidate 
for the fight against SARS-CoV-2 should be examined for its 
(possible) pleiotropy during infection. 
 
The role of autophagy on immune signaling 
Autophagy directly impacts immune signaling, and autoph-
agy induction hence may counteract CoVs by promoting 
immunological defense mechanisms (Figure 1). For in-
stance, autophagy regulates, and can be regulated by, so-
called pattern recognition receptors (PRRs), which sense 
molecules specifically derived from microorganisms (path-
ogen-associated molecular patterns, PAMPs) [94, 95]. PRRs 
are present in various cells of the innate immune system 
and many epithelial cells [95]. There, they are distributed 
at diverse locations (either at the cell surface or in the cy-
toplasm), providing a recognition system for different life 
cycle phases of a given pathogen [95]. PAMP-induced sig-
naling triggers a multitude of pathways, including pro-
inflammatory responses, that result in the synthesis of 
immunostimulatory molecules including cytokines, chemo-
kines and immunoreceptors [94]. 

Autophagy further assists immune responses by pro-
cessing and supporting the presentation of antigens on 
major histocompatibility complex (MHC) class II, responsi-
ble for loading extracellular antigens [96, 97]. In addition, 
autophagy can deliver exogenous viral antigens into MHC-I 
molecules for cross-presentation (the MHC-I pathway is 
usually employed for loading endogenous antigens) [97, 
98]. Moreover, autophagy directly impacts the activation, 
proliferation and differentiation of immune cells [99]. 
Amongst others, autophagy has been connected to the 
differentiation of CD8+ T-cells into cytotoxic T lymphocytes, 
to dendritic cell and B cell development, to plasma cell 
differentiation, and to macrophage differentiation, there-
fore covering multiple instances of the innate and adaptive 
immune systems [99]. Of note, autophagy activation by 
caloric restriction mimetics (including hydroxycitric acid 
and spermidine) also improves anticancer immunosurveil-
lance [100]. In addition, the general cellular pro-survival 
effects of autophagy extend to several immune cell types. 
Pharmacological autophagy induction by spermidine [87], 
for instance, has been demonstrated to promote the 
maintenance and survival of memory CD8+ T cells [101] as 
well as to counteract B lymphocyte senescence [102].  

The interplay of autophagy and inflammation is com-
plex, since it does not only encompass positive but also 
negative regulatory mechanisms. For example, autophagy 
can digest the interleukin precursors produced by inflam-
masomes (e.g. pro-IL-1), but also directly target inflam-
masome components (e.g. NLRP3, AIM2 and ASC) [103]. In 
sum, autophagy ensures acute inflammatory responses 
while preventing excessive and prolonged hyperinflamma-
tion.  

Finally, it should be noted that autophagy may have 
paracrine functions in the form of unconventional secre-
tion [104], thus adding yet another layer of non-cell auton-
omous effects. In the context of viral infections, this mech-
anism may be used to induce protective responses in cells 
neighboring an infection site [105, 106]. In primary human 
placental trophoblasts, for instance, autophagy induction 
promotes packaging and exosome-dependent delivery of 
specific miRNAs, which induce autophagy in non-placental 
recipient cells, conferring resistance to a variety of viruses 
[105]. This may be (one of) the mechanism(s) through 
which placental and maternal cells optimize their defense 
against viral infections during pregnancy. 

 

CONCLUSIONS 
The existing evidence allows the speculation that autopha-
gy induction might counteract CoV infection at different 
levels, although more specific data are certainly required. 
As mentioned above, the restriction of calorie intake is the 
most robust method to induce autophagy. However, the 
fight against acute infections also requires sufficient energy 
supply, suggesting that autophagy induction via caloric 
restriction or fasting regimens may be counterproductive, 
at least in the short-term during (as well as shortly before) 
infection. Therefore, caloric restriction mimetics [107, 108], 
natural or synthetic compounds with the ability to induce 
autophagy, may circumvent this problem.  

Irrespectively of whether autophagy modulation will 
eventually be part of the strategies against COVID-19, the 
current pandemic outbreak is a shocking reminder that 
emerging (and re-emerging) infectious pathogens are (and 
will be) a major challenge. In view of the exposed vulnera-
bility of our medical structures and socioeconomic well-
being, this pandemic underlines how essential it is to fur-
ther establish and secure global healthcare as well as to 
promote and extend robust research against infectious 
diseases. 
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