Supplementary information

A Modular Cloning Toolkit for the production of recombinant proteins in *Leishmania tarentolae*

Katrin Hieronimus^{1,2,‡}, Tabea Donauer^{1,2,‡}, Jonas Klein^{1,‡}, Bastian Hinkel^{1,‡}, Julia Vanessa Spänle^{1,‡}, Anna Probst^{1,‡}, Justus Niemeyer^{1,‡}, Salina Kibrom¹, Anna Maria Kiefer¹, Luzia Schneider², Britta Husemann², Eileen Bischoff², Sophie Möhring,² Nicolas Bayer¹, Dorothée Klein¹, Adrian Engels¹, Benjamin Gustav Ziehmer¹, Julian Stieß³, Pavlo Moroka¹, Michael Schroda^{1, *}, and Marcel Deponte^{2, *}

¹Faculty of Biology, Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany

²Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany

³Faculty of Computer Science, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany

[‡] Authors contributed equally to this work

*Correspondence to: Michael Schroda Faculty of Biology, Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany Email: schroda@bio.uni-kl.de Phone: +49 631 205 2697 Fax: +49 631 205 3799

*Correspondence to: Marcel Deponte Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany Email: deponte@chemie.uni-kl.de Phone: +49 631 205 3421 Fax: +49 631 205 3419

Supplementary Figure S1

Supplementary Figure S1. Effect of C-terminal GST- or peptide tags on the stability of secreted RBD fusions with either mCerulean or mVenus. A) Schematic overview and expected mass of the secreted RBD fusion proteins. Fusion variants 4 and 8 with an N-terminal 3xHA tag instead of the N-terminal signal peptide served as cytosolic controls. Fusion variant 9 served as a RBD control without mCerulean or mVenus domain. S8H, Strep-8xHis tag; HA8His, HA-8xHis tag. B) Comparative Western blot analysis with an antibody against the RBD domain of RBD-mCerulean fusion proteins in the cell-containing pellet fraction (P) and supernatant fraction (S) following tetracycline induction of the according *L. tarentolae* liquid cultures. Recombinant RBD served as positive control (p.c.) and an induced culture without plasmid as negative control (n.c.). The calculated masses from panel A are indicated. C) Comparative Western blot analysis with an antibody against the RBD domain of RBD-mVenus variants. D) Comparative Western blot analysis with an antibody against the RBD domain or the His tag of C-terminally 8xHis-tagged fusion proteins.

Supplementary Figure S2

Supplementary Figure S2. Effect of different C-terminal tags on the stability of unfused secreted RBD. A) Schematic overview and expected sizes of the secreted RBD variants. Secreted NanoLuc was tested as an alternative protein. S8H, Strep-8xHis tag; HA8His, HA-8xHis tag. B) Comparative Western blot analysis with antibodies against the His and HA tags on RBD and NanoLuc in the cell-containing pellet fraction (P) and supernatant fraction (S) following tetracycline induction of the according *L. tarentolae* liquid cultures. Three different clones were analyzed for the NanoLuc construct. Recombinant RBD served as positive control (p.c.) and a mock-induced culture without plasmid as negative control (n.c.). The calculated masses from panel A are indicated. C) Comparative Western blot analysis with an antibody against RBD as in panel B. Induced cultures without plasmid (n.c.) or with domesticated empty vector (d.v.) served as negative controls and recombinant RBD served as a positive control (p.c.).

Supplementary Figure S3

Supplementary Figure S3. Fluorescence microscopy confirms nuclear localization of NLS-tagged sfGFP. Nuclear and kinetoplast DNA of *L. tarentolae* promastigotes were stained with DAPI. A strain containing empty vector pLEXSY_I-blecherry3_dom_lacZ that encodes cytosolic mCherry served as a negative control (upper panels). Strains with two versions of plasmid-encoded NLS-tagged sfGFP are shown below. The monopartite NLS from construct SV40 served as a positive control (middle panels). The bipartite NLS from nucleoplasmin was analyzed for the cells that are shown at the bottom.

Oligonucleotide	Sequence	Target, product size
plex1-for	5'-AAAA GGTCTC T <u>C</u> TCTCATGCTGCCCAATC-3'	pLEXSY_I-blecherry3,
plex2-rev	5'-AAAA GGTCTC A <mark>GGGA</mark> CCGTGCGAGAGACGTATGC-3'	1718 nt
plex3-for	5'-AAAA GGTCTC TGCTCTCGCGGTATCATTGCAGC-3'	pLEXSY I-blecherry3,
plex1-rev	5'-AAAA GGTCTC AGACAAAACGACCAAAGTTCCGAA-3'	1886 nt
plex2-for	5'-AAAA GGTCTC TTCCCGTTTATTTGATCATGTA-3'	pLEXSY I-blecherry3,
, plex400-rev	5'-AAAA GGTCTC AAATCTCCTTTCCTGCATC-3'	(475 nt)
plex400-for	5'-AAAA GGTCTC AGATTTACTGCAGGACGTCTA-3'	pLEXSY I-blecherry3.
plexN-rev	5'-AAAA GGTCTC TGAGGTGATGTCCAACTTG-3'	1622 nt
plexN-for	5'-AAA AGGTCTC TCCTCCCACAACGAGGACT-3'	pLEXSY I-blecherry3.
plex3-rev	5'-AAAAGGTCTCAGAGCCACGTCACCGGCTCCAGA-3'	2638 nt
BW-BgIII-for	5'-AAAAAGATCTGCCATT GAGACC GTCACAGCTTGTC-3'	pICH47742.
BW-Notl-rev	5'-AAAAGCGGCCGCAAGCT GAGACC GCAGCTGGCACGA-3'	623 nt
SAP1-for	5'-AA GAAGAC AACCATGGCCTCGAGGCTCGTC-3'	sAP1 in pLEXSY 1-
SAP1-rev	5'-TT GAAGAC ATCATTGCGCCAGCGACGACA-3'	blecherry3, 100 nt
3HA-B2-for	5'-AAAA GAAGAC GACCATGTACCCCTACGACG-3'	pCM0-100.
3HA-B2-rev	5'-AAAA GAAGAC ATCATTGCGGCAGCGTAGTCCG-3'	131 nt
MiMa-B2-for		mtHSP60
MiMa-B2-rev		63 nt
Met-B2-for	5'-AAGAAGACGTCCATGGCAATGCAGTCTTCTT-3'	None
Met-B2-rev	5'-AA GAAGAC TGCATTGCCATGGACGTCTTCTT-3'	31 nt
NI S-B2-for	5'-rratgaaaaagarragerragerragaaaaaagarragerrageraaaaaaagaaaaaagaaaaa	NI S nucleonlasmin
NI S-B2-rev	5'-CATTCCCTTTTTTTTTTTCCCTGGCCGGCCTTTTTCGTGGCCGGCCTGGCCTTTTC-3'	59 nt
Spacer-B3-for	5'-AATGAGCGGCGGCGGCGG-3'	None
Spacer-B3-rev	5'-Arrtr/Gregerigeriger-3'	22 nt
BBD-B3-for	5'_AAAA GAAGAC CAAATGCGCGTGCAGCCGA_3'	nMBS857
RBD-B3-rev	5'-AAAA GAAGAC CAACTGCGAAGTTCACGCAC-3'	703 nt
RBD-B4-for	5'-AAAA GAAGAC (AAGGT(GGTGCAGCCGA-3'	nMBS857
RBD-B4-rev	5'-TTTT GAAGAC CACGAACCGAAGTTCACGC-3'	703 nt
mCe-for	5'-AAAA GAAGAC CAAATGATCGAGGGCAGGGTGA-3'	nCM0-046
mCeln-up	5'-TTTT GAAGAC CATTACCGTCGTCCTTGAAGAA-3'	354 nt
mCeln-down	5'-AAAA GAAGAC AGGTAACTACAAGACCCG-3'	pCM0-046
mCe-rev	5'-TTTT GAAGAC AACGAACCCTTCTCGAACTGC-3'	470 nt
mCe-B4-for	5'-AA GAAGAC GGAGGTGTGAGCAAGGGCGAGGA-3'	pMBS859.
mCe-B4-rev	5'-AA GAAGAC CTCGAACCCTTGTACAGCTCGTC-3'	744 nt
mCe-B5-for	5'-AA GAAGAC GGTTCGGTGAGCAAGGGCGAGGA-3'	nMBS859
mCe-B5-rev	5'-AAA GAAGAC TGAAGCTTACTTGTACAGCTCGTC-3'	746 nt
mVe-for	5'-AAAA GAAGAC GTAATGGTGAGCAAGGGCGAG-3'	pCM0-066
mVeln-up	5'-AAAA GAAGAC GCCGTCGTCCTTGAAGAAGA-3'	338 nt
mVeln-down	5'-AAAA GAAGAC AGGACGGTAACTACAAGACCC-3'	nCM0-066
mVe-rev	5'-AAAA GAAGAC TACGAACCCTTGTACAGCTCGTC-3'	438 nt
mVe-B4-for	5'-AAAA GAAGAC GTAGGTGTGAGCAAGGGCGAG-3'	nMBS858
mVe-B4-rev	5'-AA GAAGAC CTCGAACCCTTGTACAGCTCGT-3'	746 nt
mVe-B5-for	5'-AAAA GAAGAC GTTTCGGTGAGCAAGGGCGAG-3'	pMB\$858
mVe-B5-rev	5'-AAAA GAAGAC CGAAGCTTACTTGTACAGCTCGTC-3'	749 nt
8HisHA-B5-for	5'-TTCGCACCACCACCACCACCACCACCGCGGCAGCTACCCCTACGACGTGCCCGACTACGCTTAA-3'	None.
8HisHA-B5-rev	5'-AAGCTTAAGCGTAGTCGGGCACGTCGTAGGGGTAGCTGCCGCGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGG	71 nt
8HisSPHA-for	5'-AAGAAGACAATTCGCACCACCACCACCACCACCACCACCCAC	pMBS659,
8HisSPHA-rev	5'- TT GAAGAC AAAAGCTTAAGCGTAGTCGGGCACGT	208 nt
DGDL-B5-for	5'-TTCGGACGGCGACCTGTAG-3'	None.
DGDL-B5-rev	5'-AAGCCTACAGGTCGCCGTC-3'	23 nt
MDDL-B5-for	5'-TTCGATGGACGACCTGTAG-3'	None.
MDDL-B5-rev	5'- <u>AAGC</u> CTACAGGTCGTCCAT-3'	23 nt

Supplementary Table 1. Oligonucleotides used for cloning, templates, and amplification products.

BbsI (GAAGAC) and BsaI (GGTCTC) recognition sites are shown in bold, overhangs are underlined.