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Research Article 

ABSTRACT  Intratumoral microbiota can regulate the tumor immune microen-
vironment (TIME) and mediate tumor prognosis by promoting inflammatory 
response or inhibiting anti-tumor effects. Recent studies have elucidated the 
potential role of local tumor microbiota in the development and progression 
of lung adenocarcinoma (LUAD). However, whether intratumoral microbes 
are involved in the TIME that mediates the prognosis of LUAD remains un-
known. Here, we obtained the matched tumor microbiome and host tran-
scriptome and survival data of 478 patients with LUAD in The Cancer Genome 
Atlas (TCGA). Machine learning models based on immune cell marker genes 
can predict 1- to 5-year survival with relative accuracy. Patients were strati-
fied into high- and low-survival-risk groups based on immune cell marker 
genes, with significant differences in intratumoral microbial communities. 
Specifically, patients in the high-risk group had significantly higher alpha di-
versity (p < 0.05) and were characterized by an enrichment of lung cancer-
related genera such as Streptococcus. However, network analysis highlighted 
a more active pattern of dominant bacteria and immune cell crosstalk in TIME 
in the low-risk group compared to the high-risk group. Our study demonstrat-
ed that intratumoral microbiota-immune crosstalk was strongly associated 
with prognosis in LUAD patients, which would provide new targets for the 
development of precise therapeutic strategies. 
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INTRODUCTION 
Lung cancer (LC) is one of the most common malignancies 
and a leading cause of disease-related death around the 
world [1]. Histopathological differences divide LC into non-

small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC). Lung adenocarcinoma (LUAD) is the most promi-
nent cytological type of NSCLC, accounting for approxi-
mately 40% of LC cases [2]. Although multimodal treat-
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ment strategies including immunotherapy, targeted thera-
py, chemoradiotherapy, and surgical resection have made 
great progress in recent decades [3, 4], the 5-year survival 
rate for patients with LC remains below 20% [5, 6]. There-
fore, it is urgent to clarify the pathogenesis, diagnostic 
biomarkers, and therapeutic targets of LC to facilitate the 
diagnosis and treatment of LC. 

The tumor immune microenvironment (TIME) largely 
determines the prognosis and the effect of immunothera-
py of patients with cancer [7-10]. The composition of the 
tumor microenvironment varies by tumor type, but signa-
ture features include immune cells, stromal cells, blood 
vessels, and extracellular matrix, and are generally recog-
nized as active agents of cancer progression [11]. Tumors 
are infiltrated by a variety of adaptive and innate immune 
cells that can perform both pro- and anti-tumor functions 
[12]. Song et al. developed a seven-gene prognostic signa-
ture based on nature killer cell marker genes in The Cancer 
Genome Atlas (TCGA) LUAD cohort, and its ability to pre-
dict prognosis has been well validated in different cohorts 
[13]. One study quantitatively analyzed the immune cell 
infiltration across 32 cancer types and observed considera-
ble heterogeneity in the prognostic correlation of these 
cells across different cancer types, and in particular, estab-
lished an immune-cell characteristic score model for LUAD 
that had a favorable prognostic performance [14]. Alt-
hough the effects of immune infiltration on cancer treat-

ment and prognosis have been extensively studied [7, 9, 10, 
15], the factors that influence immune infiltration and the 
contributing factors to the individual heterogeneity of 
TIME have been largely unknown. 

The TIME provides a friendly niche for the presence of 
a wide range of microbes, and tissue-specific intracellular 
microbes have been identified in most human tumors [16]. 
The lungs of healthy individuals have long been considered 
sterile, but with the maturity of second-generation se-
quencing technology, the diversity of the lung microbiota 
and its relationship to lung disease and LC has been con-
firmed [17, 18]. Over the past decade, microbial communi-
ties have been implicated in the initiation, progression, 
metastasis, and response to treatment of a variety of can-
cers [19-22]. Recent studies have shown that microbes 
exist in tumor cells and immune cells, indicating that these 
microbes can affect the status of tumor immune microen-
vironment [23-25]. Studies have shown differences in the 
lung microbiome between patients with LC and those with 
benign lung disease, and that certain bacteria may have 
the potential to predict LC [26]. During the development of 
lung cancer, the number and species of commensal micro-
organisms in the lung changed, which promoted the prolif-
eration and function of resident immune cells in the lung, 
furthermore, it promotes the development of LC through 
its effect on inflammatory reaction [27]. However, whether 
the microbiome in tumor tissue is related to the TIME and 

FIGURE 1: Overview of the analysis pipeline. The tumor microbiome abundance of LUAD was annotated by Poore et al. from RNA-Seq data and 
the matched host gene expression was downloaded from The Cancer Genome Atlas. Immune cell marker genes were used to build machine 
learning models to predict patient survival. COX regression analysis based on immune cell marker genes stratified patients into high- and low-
risk. The intratumoral microbiota, the tumor immune microenvironment, and their crosstalk between the high-and low-risk groups were further 
explored. 
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prognosis of LUAD remains unclear. Besides, the pattern of 
microbe-immune cell crosstalk in the TIME of LUAD and its 
prognostic implications need exploration. The whole-
transcriptome sequencing data provided by TCGA offers a 
good opportunity to explore the crosstalk between the 
intratumoral microbiota and the TIME, which can be quan-
tified based on host gene expression. Here, we identified 
immune cell marker genes in LC tissues and correlated 
them with the prognosis of patients with LUAD, and com-
pared the intratumoral microbiota of high- and low-risk 
patients, as well as crosstalk patterns with immune cells in 
the TIME. We found that the immune cell marker gene-
based machine learning model can predict the survival of 
patients with LUAD accurately. The intratumoral microbio-
ta differed significantly between high- and low-risk patients, 
and there was variation in the crosstalk pattern between 
the microbial components and immune cells in the TIME. 
 

RESULTS 
Pipeline of this study 
The workflow of this study is shown in Figure 1. To illumi-
nate the intratumoral microbiota in LUAD, we revisited and 
obtained the intratumoral microbial profiles in multiple 
cancer types, which were processed by Poore et al. using 

sequencing data in TCGA [28]. The LUAD samples in TCGA 
consist of 478 RNA sequencing (RNA-seq) data from the 
primary tumor of 478 patients. In addition, we also ob-
tained the host gene expression of these patients with 
LUAD in TCGA which matched with the tumor microbiome. 

We next downloaded cell marker genes from CellMark-
er2 database and selected lung tissue of LUAD to get 
marker genes in lung cells. By filtering out genes unrelated 
to immunity, we obtained 297 immune cell marker genes 
in lung tissue associated with LUAD. These genes corre-
sponded mainly to 33 types of immune cells (Figure 2A). 
Among these, T cells had the most marker genes, reaching 
31, followed by macrophages and cancer stem cells. Other 
cell types such as effector T cells, naive B cells, and alveolar 
macrophages (AM) etc. had only three marker genes. 
These genes will be used to predict the survival time of 
patients with LUAD. 
 
Immune cell marker genes show strong power in predic-
tion of LUAD survival 
478 patients with LUAD with their gene expression have 
been obtained from TCGA. First, we dichotomized patients 
based on survival time of one to five years, respectively. 
Five-fold cross validation was implemented to verify the 

FIGURE 2: Survival prediction model based on immune cell marker genes using machine learning. (A) The number of marker genes corre-
sponding to specific immune cell types. (B) ROC curves of 1- to 5-year survival prediction by five-fold cross validation of six machine learning 
algorithms. 
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accuracy of the six machine learning algorithms. Specifical-
ly, we classified all patients into five groups. Four of five 
group samples were used to train the model and the re-
maining one was used to test the model. After repeating 
this process five times, each group has been tested once 
and trained four times. As shown in Figure 2B, the predic-
tion accuracy fluctuated slightly with the different survival 
time as the grouping threshold, and the difference of pre-
diction accuracy of different algorithms was also very small. 
In some models, such as GB (gradient boosting), the mean 
AUC (area under the curve) for predicting one-year survival 
was up to 0.72, which means it is effective to predict the 
survival time of patients with LUAD through 297 immune 
cell marker genes. 
 
Immune-related activities are associated with survival in 
LUAD patients 
Since the TIME plays an important role in the development 
of LUAD [29, 30], we next explored the impact of differen-
tial expression of immune cell marker genes on the TIME of 
patients with LUAD. First, we performed univariate COX 
regression on 297 immune cell marker genes and identified 
84 genes that were significantly associated with patient 
survival. Multivariate COX regression analyses were then 
performed based on these survival-related genes. The re-
gression coefficients of these prognostic genes were ob-
tained and the risk score of each patient was calculated 
based on the expression levels and coefficients of each 
gene. Figure 3A shows the survival curves of high-risk and 
low-risk. A P-value of less than 0.001 indicates that these 
prognosis-related immune cell marker genes could signifi-
cantly distinguish the survival time of patients (Figure 3A). 
Furthermore, we examined the ten genes most significant-
ly associated with survival and found that they corre-
sponded to immune cell types such as macrophages and 
regulatory T cells (Figure 3B). 

We next characterized the immune cell infiltration of 
patients in high-risk and low-risk. CIBERSORT was used to 
quantify the abundance of 22 types of immune cells in the 
TIME (Figure 3C). Among them, M2 macrophages had the 
highest abundance, followed by CD4+ T cells and CD8+ T 
cells. Moreover, we identified six types of immune cells 
that significantly differed between the high-risk group and 
the low-risk group, including M0 macrophages, B cell plas-
ma, and myeloid dendritic cells (Figure 3D). 

Since we used 297 genes to predict the survival time of 
patients with LUAD and the experiments results showed 
relatively high precision, these 297 genes should be signifi-
cantly associated with the prognosis of LUAD in function. 
Therefore, we next explored the GO terms of these genes. 
Enrichment analysis showed that these genes were signifi-
cantly associated with 1359 GO terms (adjusted P < 0.05). 
The GO terms can be divided into three classes: 1220 bio-
logical process, 59 cellular components, 80 molecular func-
tion. Figure 3E shows the five GO terms with the largest 
number of genes in each class. These genes enriched pro-
cesses are associated with immune-related activities such 
as regulation of cell-cell adhesion, regulation of T cell acti-
vation, and cytokine receptor binding. Figure 3F-H showed 

the most significantly enriched GO terms in each class, 
along with the corresponding genes. CD74 is a receptor for 
the cytokine macrophage migration inhibitor [31], and 
Kashima et al. reported that CD74 is a novel gene that 
plays a key role in the drug-resistant state [32]. FOXP3 is a 
member of the forkhead transcription factor family, which 
is primarily expressed in a subset of CD4 + T cells and plays 
an inhibitory role in the immune system [33]. Yang et al. 
reported that FOXP3 can act as a co-activator of the Wnt-b-
catenin signaling pathway, inducing epithelial-
mesenchymal transition and tumor growth and metastasis 
in NSCLC [34]. Takanami found that CCR7 may be involved 
in the development of lymph node metastasis in NSCLC 
[35]. 
 
Intratumoral microbiota differentiation between high- 
and low-survival-risk patients 
Recent studies have shown that the intratumoral microbio-
ta plays a key role in theTIME [23, 36], so we next explored 
whether there are differences in the intratumoral microbi-
ota between high- and low-survival-risk patients. Proteo-
bacteria was the most abundant phylum and Pseudomonas 
was the most abundant genus (Figure 4A). There was sig-
nificant difference in alpha-diversity between high- and 
low-survival-risk patients (P < 0.05). For instance, the mi-
crobial abundance of the low-risk group was significantly 
higher that of the high-risk group (Figure 4B, P = 0.039), 
while the Shannon (Figure 4C, P = 0.017) and Simpson indi-
ces (Figure 4D, P = 0.044) of the low-risk group were signif-
icantly lower than that of the high-risk group. Moreover, 
beta-diversity analysis showed that intratumoral microbial 
profiles were significantly different between the low-risk 
and high-risk group (Figure 4E, P = 0.02), and beta-diversity 
was more dissimilar among individuals in the low-risk 
group (Figure 4F, P < 0.001). Based on linear discriminant 
analysis effect size (LEfSe) analysis, at the phylum level, six 
phyla were enriched in the high-risk group and two phyla 
were enriched in the low-risk group (Figure 4G). At the 
genus level, 17 genera were enriched in the high-risk group 
and one genus was enriched in the low-risk group (Figure 
4H). 
 
Different microbiota-immune crosstalk patterns in the 
TIME between the high- and low-risk group 
We next explored whether microbiota-immune cell cross-
talk in the TIME differed between the high- and low-risk 
group. Considering the predominance of dominant bacteria 
in the community, we performed Spearman correlation 
analysis for the top 50 genera in relative abundance and 22 
types of immune cells. Figures 5A and B show only the 
microbe-immune cell pairs that were significantly associat-
ed (p < 0.05). The results of network analysis showed that 
the low-risk group presented more active microbe-immune 
crosstalk than the high-risk group (Figure 5A-C). The high-
risk network had 134 edges, including 75 positive correla-
tions and 59 negative correlations, while the low-risk net-
work had 161 edges, including 89 positive correlations and 
72 negative correlations (Figure 5C). In addition, more 
nodes  and higher average  degree of nodes  in the low-risk  
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FIGURE 3: Tumor immune microenvironment and related functions are associated with survival in LUAD patients. (A) Survival curve in different risk 
score groups obtained by COX regression analysis. (B) Sankey plot showing the correlation between immune cells and the ten genes most associated 
with survival. (C) Relative abundance of the immune cell components in each patient. (D) Boxplot showing the differences in the abundance of im-
mune cells between the high- and low-risk group. Wilcoxon test was used to perform the statistical test. (E) Five GO terms with the largest number of 
genes in each class. (F-H) The most significantly enriched GO terms in each class, along with the corresponding genes. 
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group network than in the high-risk group indicated more 
complex and robust microbe-immune crosstalk pattern in 
the low-risk group. 

To further explore the relationship between specific 
microbes and specific cells, we screened the significantly 
correlated microbial-immune pairs with absolute correla-
tion coefficients greater than 0.2 (Figure 5D-E). We ob-

served some common and significant microbe-immune cell 
associations in the high-risk and low-risk groups. For in-
stance, in both groups, Lachnoclostridium, Acinetobacter, 
and Paenibacillus were positively correlated with M1 mac-
rophages. Aeromonas and Vibrio were negatively correlat-
ed with regulatory T cells. However, we still identified mul-
tiple correlations between microbes and cell types which 

FIGURE 4: The intratumoral microbial profile was significantly different between the high- and low-risk group. (A) Relative abundance of 
the intratumoral microbes at the genus level in each patient. Boxplot showing the difference in (B) microbial richness, (C) the Shannon and 
(D) Simpson indices between the high- and low-risk group. Wilcoxon test was used to perform the statistical test. (E) PCoA based on the 
Bray-Curtis dissimilarity matrix showing the difference in intratumoral microbial community composition between the high- and low-risk 
group. (F) Boxplot showing the difference in Bray-Curtis dissimilarity index between the high- and low-risk group. Significantly different mi-
crobes in abundance between the high- and low-risk group at the (G) phylum and (H) genus level. 
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were specific for the survival risk group. Most notably, 
memory CD4+ T cells were positively associated with more 
than a dozen bacteria in the low-risk group, compared with 
just two in the high-risk group. The role of memory T cells 
in LC has been extensively studied [37, 38]. One study re-
ported that when tissue-resident memory T cells are pre-

sent in tumors, they act together to attack the cancer cells 
and protect the host [38]. Our results show that the inter-
action between memory T cells and intratumoral bacteria 
in TIME is different in patients with LUAD with different 
survival risks. 

 

FIGURE 5: Intratumoral microbe-immune crosstalk was associated with survival in LUAD patients. Microbe-immune cell interaction networks in (A) 
high- and (B) low-risk groups. Only edges with p < 0.05 were shown in the figure. The size of the node indicates the number of nodes connected to it in 
the network. The solid yellow line and the dotted gray line indicate positive and negative correlations, respectively. (C) Comparison of parameters of 
microbe-immune interaction network in high- and low-risk group. On the basis of Figure 5a and b, microbial-immune cell relationship pairs with an 
absolute value of correlation coefficient greater than 0.2 were screened, further resulting in network plots of (D) high- and (E) low-risk groups. 
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DISCUSSION 
Recent studies have identified the presence of intratumor-
al microbiota in various non-gastrointestinal tumors, in-
cluding LUAD. However, the role of the intratumoral mi-
crobiota in the prognosis of LUAD remains largely unknown. 
In this study, survival of patients with LUAD could be dis-
tinguished based on immune cell marker genes. The intra-
tumoral microbiota varied between high- and low-survival-
risk patients using these immune cell marker genes. More-
over, the intratumoral microbiota-immune cell crosstalk 
pattern were found to be different between these two 
groups, which may contribute to the prognosis of patients 
with LUAD. 

In the experiment of predicting the survival of patients 
with LUAD by selected 297 immune cell marker genes, the 
machine learning model obtained the result of AUC = 0.72, 
which is relatively accurate, but there is still room for im-
provement. These immune cell-specific genes correspond 
to a wide variety of immune cells, not all of which are in-
volved in the development of LUAD. Therefore, more 
mechanistic studies are needed to investigate and identify 
specific immune cells that may influence the progress of 
LUAD, or to identify tumor immune infiltration characteris-
tics in patients with different prognostic risks. Therefore, 
predictive models based on marker genes of specific im-
mune cells that regulate the development of LUAD through 
a well-defined mechanism or function can greatly improve 
the accuracy of patient prognosis prediction. Altogether, 
only by accurately identifying and classifying immune cell 
marker genes related to pathogenesis and treatment can 
achieve personalized and precise treatment. 

The diversity of TIME profiles in patients with LUAD has 
been highlighted in previous reports, proving that it could 
serve as a hallmark for LUAD development [39-42]. Shino-
hara et al. conducted a single-sample gene set enrichment 
analysis of TIME-related gene sets to develop a new scor-
ing system (TIME score), the TIME score captures the intri-
cate interactions between tumor proliferation, anti-tumor 
immunity and immunosuppression, which may be useful in 
predicting the prognosis or selecting treatment strategies 
in patients with LC [42]. Taniguchi et al. revealed that AMs 
promote the proliferation of cancer cells [43]. Under tu-
mor-containing conditions, the expression of statin βA (IN-
HBA) in lung AMs is up-regulated, thus promoting tumor 
proliferation and forming a "vicious cycle" in in vivo tumor 
environment. We found that the abundance of M0 macro-
phages was significantly higher in the high-risk group com-
pared to the low-risk group (p < 0.0001), consistent with 
previous reports. In addition, B and plasma cells (PCs) were 
found to be more abundant in the high-risk group. By a 
comprehensive analysis of 50,000 tumor-infiltrating B and 
PCs, Hao et al. found that memory B cells and PCs were 
highly enriched and highly differentiated in tumor tissues, 
and PC were significantly increased in smokers with distinct 
differentiation trajectories [44]. Furthermore, one study 
showed that memory T cells in lung tumors predicted good 
outcomes for patients, and that patients with high levels of 
these cells in their tumors were 34% less likely to die [38]. 
Consistently, we found that tissue-resident memory CD4+ 

T cells were more enriched in the low-risk group compared 
with the high-risk group. 

We found that the intratumoral microbiome profiles 
were significantly different between the high- and low-risk 
group. Interestingly, a large number of genera were signifi-
cantly enriched in the high-risk group, including multiple 
LC-related pathogens, such as Streptococcus, Escherichia, 
and Klebsiella. Li et al. reported that LC cells infected with 
Streptococcus pneumoniae formed larger tumors in mice 
compared to untreated LC cells, and their abundance was 
associated with survival [45]. LC surgery is prone to serious 
infectious complications caused by Gram-negative bacteria 
such as Escherichia coli, which may reduce long-term sur-
vival after discharge through cancer recurrence and metas-
tasis [46]. Klebsiella expression is more pronounced in lung 
squamous-cell carcinoma than in LUAD, however, we still 
found significantly enriched Klebsiella in high-risk LUAD 
patients, suggesting their potential significance in LUAD 
prognosis [47]. Microbiota-immune crosstalk in the TIME 
may contribute to the heterogeneity of outcomes in pa-
tients with LUAD. Jin et al. reported that LC alters the 
number and type of microbes in the lung and activates the 
immune system, creating an inflammatory environment for 
LC and ultimately promoting the development of LC [27]. 
Although intratumoral microbial alpha diversity was signifi-
cantly lower in low-risk patients than in high-risk patients, 
we identified more complex and close microbe-immune 
interactions in low-risk patients. Predictive models that 
combine immune cell marker genes with their associated 
intratumoral microbiota may further improve performance 
in predicting patient survival. In addition, our results sug-
gest that targeting specific microbes within tumors can 
modify tumor immune infiltration by exploiting the associ-
ation of microbes with immune components. Future multi-
center studies with larger cohorts will be needed to deter-
mine the TIME characteristics that are most favorable to 
patient outcomes for LUAD. 

There were several limitations in this study. A major 
limitation was that our study on the interactions between 
intratumoral microbiota and immune cells were only based 
on a single TCGA dataset, and lacked external independent 
verification. Moreover, the causal relationship and specific 
mechanisms between intratumoral microbiota and im-
mune and LUAD prognosis require rigorous experimental 
verification. Another limitation was that the tumor micro-
biome abundance was obtained by Kraken pipeline from 
RNA sequencing data. Therefore, it is necessary to validate 
our results by other microbial detection methods, such as 
metagenomic sequencing or PCR analysis. 

In conclusion, this study advances the understanding of 
the relationship between intratumoral microbe-immune 
crosstalk and prognosis in patients with LUAD. Although 
components in the TIME have emerged as potential targets 
for lung cancer immunotherapy, our study suggests that 
ignoring the important role of intratumoral microbiota in 
the TIME may not enable all patients to benefit from im-
munotherapy. Future development of emerging immuno-
therapy strategies for LUAD will require perturbation of the 
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microbe-immune cell crosstalk pattern in the TIME to 
achieve truly individualized precision-targeted therapies. 
 
MATERIALS AND METHODS 
Data acquisition 
The intratumoral microbiome data used in this study and the 
metadata were downloaded from a previous work conducted 
by Poore et al., and are available at ftp://ftp.microbio. 
me/pub/cancer_microbiome_analysis/. Poore et al. developed 
a Kraken TCGA microbial-detection pipeline, which uses an 
ultrafast Kraken algorithm to map sequence readings that do 
not align with the human reference genome to known bacte-
rial, viral, and archaea microbial genomes [28]. The bacterial 
abundance data in tumor tissue of patients with LUAD was 
used in this study. The decontamination process was detailed 
in the original paper [28]. The overall survival time and surviv-
al status of the samples were collected from UCSC Xena 
(http://xena.ucsc.edu/). The quantification of host gene ex-
pression by RNA-Seq were downloaded from 
https://portal.gdc.cancer.gov/. 
 
Selection of immune cell marker genes 
The immune cell marker gene must satisfy two conditions: 
first, it must be the immune cell marker gene in the lung, and 
second, all the immune cell marker genes must be related to 
LUAD. By defining LUAD and immune cells, we obtained a total 
of 297 immune cell marker genes from the CellMarker 2.0 [48] 
database.  
 
Quantification of immune cells in the TIME of patients with 
LUAD 
CIBERSORT [49] was used to perform the immune cell analysis 
based on the TCGA LUAD gene expression data. We converted 
FPKM (fragments per kilobase of transcript per million frag-
ments mapped) value to TPM (transcripts per million) value 
because TPM can correct the batch effect, so the sum of FPKM 
is a fixed value. 
 
Survival time prediction method 
Six machine learning models were used to predict the one to 
five-year survival of patients with LUAD. These models were 
implemented using the scikit-learn library in Python. Bagging 
(Bootstrap Aggregating) is an ensemble learning method that 
reduces model variance and improves prediction stability and 
accuracy by combining multiple decision trees. The fundamen-
tal idea is to randomly select multiple sub-samples from the 
training dataset using bootstrap sampling and train multiple 
base learners on these sub-samples. Finally, the predictions of 
these base learners were aggregated to obtain the final en-
semble prediction. 

LGBM, XGBoost (XGB), and GB (Gradient Boosting) are 
three machine learning algorithms based on Gradient Boosting 
Trees. The formula for the Gradient Boosting Tree algorithm is 
as follows: 

                   
 is the loss function,  is the true label of the first 

sample of the training data, and  is the initial predicted value 
of the model. For the m-round iteration, a new decision tree 
model  is constructed on the basis of the previous round 
model, with the goal of reducing the loss function : 

                      
The newly constructed model  is weighted with the 

previous one  to get the updated model : 

 
Among  is the learning rate, which can control the weight 

of each model. Iterative updates are repeated until a prede-
termined number of iterations is reached. 

LGBM, XGBoost, and GB are three gradient boosting tree 
algorithms that optimize and enhance the gradient boosting 
algorithm, thereby improving model efficiency and prediction 
performance. On the other hand, Adaboost is a specialized 
implementation of gradient boosting trees. It iteratively trains 
a series of weak classifiers (usually decision trees) and calcu-
lates weights for each weak classifier based on its error rate, 
resulting in a strong classifier. 

The advantages of Adaboost lie in its ability to effectively 
enhance classifier accuracy and handle complex problems. As 
an ensemble learning method, Random Forest predicts patient 
survival by constructing multiple decision trees, each trained 
on random samples of data and features. The predictions of 
multiple trees are then combined to obtain the final survival 
prediction. To evaluate the model performance and prevent 
overfitting, we employed 5-fold cross-validation. The average 
concordance index obtained from the 5-fold cross-validation 
served as the evaluation metric for the models. 
 
Microbial diversity analysis 
The microbial alpha diversity was measured by the Shannon 
and Simpson indices, and was calculated by the “vegdist” 
function in R package “vegan”. The microbial beta diversity 
was measured by the Bray-Curtis dissimilarity matrix. Linear 
discriminant analysis Effect Size (LEfSe) was used to identify 
the significantly different microbes in relative abundance, with 
a linear discriminant analysis (LDA) score greater than 2 as the 
threshold. 
 
Construction of microbe-immune cell crosstalk network 
To investigate the interactions between intratumoral microbes 
and immune cells, we conducted a correlation analysis on 22 
types of immune cells and the top 50 microbes in relative 
abundance at the genus level. The "psych" package in R was 
used to perform the Spearman correlation analysis and calcu-
late the correlation coefficients and p-values. First, to explore 
the overall properties of microbe-immune interaction net-
works in high-risk and low-risk groups, significant relationships 
with p-values < 0.05 were selected to construct the microbe-
immune interaction network. Gephi was used to visualize the 
network. Furthermore, to identify the interaction of a particu-
lar microbe with a particular cell, pairs with an absolute value 
of correlation coefficient greater than 0.2 and a p value less 
than 0.05 were screened for further network construction. 
 
Statistical analysis 
All statistical calculations were conducted using R software 
(Version 4.2.1). Differences between two groups were com-
pared using Wilcoxon rank sum test. Correlations between 
immune cells and intratumoral microbes were calculated using 
Spearman’s correlation analysis. Survival curves were per-
formed using the Kaplan–Meier (KM) method, and the signifi-
cance was determined by the log-rank test. Univariate Cox 
regression analysis was used to calculate the significance of 
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the association between immune cell marker genes and prog-
nosis in patients with LUAD. The Python package “Sklearn” 
and library “matplotlib” was used to plot receiver operating 
characteristic (ROC) curves and obtain the area under the 
curve (AUC). p < 0.05 was considered statistically significant. 
 
Data availability 
The intratumoral microbiome abundance data and metadata 
are available at ftp://ftp.microbio.me/pub/cancer_ 
microbiome_analysis/. The host gene expression data is avail-
able at https://portal.gdc.cancer.gov/. 
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