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ABSTRACT Vaginal microbiota involves seven communities-state types
(CST), four dominated by Lactobacillus. L. crispatus, particularly, offers en-
hanced protection against infections. Recurrent vulvovaginal candidiasis
and trichomoniasis affect millions of people annually, often asymptomatical-
ly, facilitating infection spread and leading complications. Co-culture, the
technique of cultivating different microbial populations together to mimic
real-life conditions, enables the study of microorganism interactions, includ-
ing inhibitory or promotive effects on pathogens. This review compiles data
on co-culture techniques to analyze interactions among Lactobacillus spp.,
Candida spp., and Trichomonas vaginalis. PubMed was searched using med-
ical subject headings (MESH) terms, ‘co-culture’, ‘coculture,’ ‘cocultivation,’
‘co-incubation,” and ‘Trichomonas vaginalis’, ‘Candida spp.,, 'Lactobacillus
spp.’. Articles were selected based on relevance to vaginal health, English
language, availability, and use of co-culture or co-incubation techniques in
the past 24 years. Co-culture and co-incubation studies over the past 24
years have advanced our understanding of microbiota-host, pathogen-host,
and pathogen-host-microbiota interactions. These studies reveal that micro-
biota composition impacts infections, with the microbiota producing sub-
stances against pathogens and pathogens developing stress tolerance
mechanisms. They elucidate pathogen virulence factors, interactions with
immune cells, and how ecological relationships between microorganisms
can enhance pathogenicity.
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Abbreviations:

AMPs - antimicrobial peptides,

BV - bacterial vaginosis,

CFU - colony forming unit,

CLM - communal liquid growth medium,
CLSM - confocal laser scanning
microscopy,

CSTs - communities-state types,
GBS - Group B Streptococcus,

hECs - ectocervical cells,

ROS - reactive oxygen species,

SEM - scanning electron microscopy,
STI - sexually transmitted infection,
VVC - vulvovaginal candidiasis.

INTRODUCTION

The human body harbors a complex microbial community,
known as microbiota, which plays a crucial role in influencing
overall health, including functions related to immunity, nutrition,
and disease susceptibility [1]. In the vaginal environment, fac-
tors such as oxygen levels, glucose, iron, and nutrients create
conditions conducive to supporting diverse microbial popula-
tions [2]. Culture-dependent techniques have long studied
vaginal microbiota, but OMICS technologies now allow for the
identification of previously uncultivable microorganisms. This
advancement has characterized the vaginal microbiota into
seven community-state types (CSTs), with four dominated by
Lactobacillus species. CST-l is dominated by Lactobacillus
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crispatus, CST-Il by Lactobacillus gasseri, CST-Ill by Lactobacil-
lus iners, and CST-V by Lactobacillus jensenii [3]. The presence
of L. crispatus is particularly associated with enhanced protec-
tion against infections [4]. In contrast, a dysbiotic vaginal mi-
crobiota lacking Lactobacillus enriched with anaerobes can
lead to bacterial vaginosis and is linked to infections like trich-
omoniasis and vulvovaginal candidiasis (VVC) [5, 6].

The vaginal microbiota includes a fungal community with
Candida albicans as the most prevalent species, which can
colonize without causing infection [7]. The presence of C. albi-
cans increases the risk of vaginitis due to immune imbalance,
dysbiosis, or epithelial barrier breaches. This opportunistic
pathogen can proliferate, leading to VVC, the second most
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common cause of vaginitis [8]. Recurrent vulvovaginal candid-
iasis (RVVC), often caused by C. albicans, affects 138 million
women annually and severely impacts quality of life and incurs
high costs [9]. VVC has demonstrated an escalation in drug
resistance, particularly against the primary therapeutic option,
fluconazole [10]. This characteristic, where Candida can either
be a part of women’s normal microbiota or act as the etiological
agent of VVGC, is attributed to its dimorphic nature [11].

The first line of defense against C. albicans is mediated by
the innate immune system, which recognizes the fungus
through phagocytic receptors [12]. Neutrophils and macro-
phages engulf C. albicans by phagocytosis, trapping it within a
phagosome and exposing it to antimicrobial peptides (AMPs),

reactive oxygen species (ROS), and other fungicidal factors [13,

14]. However, C. albicans has developed mechanisms to
evade the immune detection, escape from phagosomes, and
resist immune cell killing [15]. Additionally, epithelial cells se-
crete AMPs and pro-inflammatory cytokines, which play a cru-
cial role in recruiting neutrophils to the infection site [16, 17]. To
survive this, C. albicans produces candidalysin, a toxin that
damages host cell, further complicating the immune response
[18].

Trichomoniasis, another form of vaginitis, is the most com-
mon non-viral sexually transmitted infection (STI), caused by
the flagellated protozoan Trichomonas vaginalis, with an esti-
mated annual incidence of 156 million new cases [19]. Approx-
imately 80% of individuals infected are asymptomatic or expe-
rience minimal symptoms, leading to complications for affect-
ed individuals and facilitating the spread of the protozoan [20].
These complications stem from the intricate parasite-host rela-
tionships, driven by T. vaginalis capability to engage in phago-
cytosis, cytoadherence, and cytotoxicity, whether through
contact-dependent or independent-contact mechanisms [21].
Concerningly, resistance of T. vaginalis isolates to 5-
nitroimidazole-class drugs, the current treatment of choice, was
documented merely three years after FDA approval for their
use [22].

Similar to C. albicans, the initial immune response against
T. vaginalis is mediated by innate immune system, involving
neutrophils, myeloid cells, and the complement system [23].
T. vaginalis employs immune modulation to establish and sus-
tain infection. Its interaction with neutrophils reduces chemo-
kine production and immune cell recruitment, while also pro-
moting neutrophil apoptosis and increasing ROS production
[24]. To colonize the urogenital tract, T. vaginalis needs to ad-
here to vaginal epithelial cells through degrading the protec-
tive mucus layer [25]. Following adhesion, the parasite initiates
cytotoxicity, a process involving cytolysis, phagocytosis, and
the disintegration of the epithelial monolayer, facilitating nutri-
ent acquisition and immune evasion [26].

This review updates co-culture and co-incubation tech-
niques for studying interactions of Lactobacillus spp., repre-
senting a predominant member of the healthy vaginal microbi-
ota; Candida spp., the most abundant yeast in the vagina, and
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T. vaginalis, responsible for the most widespread nonviral STI
worldwide. These microorganisms were co-incubated or co-
cultured with other microorganisms related to STls, vaginal
microbiota, vaginal cells, or immune cells to assess vaginal
health. This review explores two approaches: communal liquid
medium growth (CLM), which includes direct mixing or biofilm
formation, and membrane separation methods like the
Transwell® system. Table 1 summarizes these studies. We
define co-incubation as short-term interactions (up to 24 h) and
co-culture as longer interactions (over 24 h), considering the
differences in doubling rates between the studied microorgan-
isms and human cells [27, 28]. T. vaginalis replicates every 4-6
h [29], C. albicans every 3-4 h [30], and Lactobacillus species
approximately every 1 h [31], whereas human cells have a
slower doubling time of around 24 h [32]. The terms co-culture
and co-incubation were retained as used by the original au-
thors, even if their application was inconsistent.

PubMed was chosen as the information source, and Medi-
cal Subject Headings (MESH) terms were used to search the
vocabulary thesaurus. The keywords and search strategy ap-
plied were: “Co-culture” OR “Coculture” OR ‘Cocultivation’ OR
‘Co-incubation” AND ‘Trichomonas vaginalis’ OR ‘Candida spp.’
OR ‘Lactobacillus spp.’. This search yielded 365 articles, of
which 19 were selected for this review. The selection criteria
required articles to be relevant to vaginal health, written in Eng-
lish, and accessible. The screening process involved examin-
ing the materials and methods sections, and only studies em-
ploying co-culture or co-incubation techniques within the past
24 years were included.

CO-CULTURE APPLILCATONS IN THE STUDY OF
VAGINAL HEALTH

Co-cultures techniques enable the simultaneous cultivation of
different cell populations, offering advantages over monocul-
tures by more accurately mimicking real-life conditions [33].
This approach allows for the study of both cell-cell and drug-
cell interactions, the latter being particularly valuable for drug
research by providing an in vivo-like cell culture model [34].
Additionally, co-culture methods facilitate the investigation of
microbial interactions, helping to elucidate patterns of interac-
tion and the ability of resident microbiota to either inhibit or
promote the growth of pathogens or opportunist organisms
[35]. Such studies are particularly relevant in microbiota - host
- pathogen interactions. The most used techniques include
CLM and membrane separation, particularly Transwell system.

Communal liquid medium growth (CLM)

CLM is widely used to study microbial interactions, substance
production, and over- or under-yielding in co-culture by varying
inoculation ratios and incubation times [36]. In this system,
direct mixing enhances interactions and molecular exchange
compared to monoculture [37]. Alternatively, biofilm formation
with multiple species in the same medium allows for the explo-
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TABLE 1 @ Summary co-incubation/co-culture studies on sexually transmitted infections (STls) microorganisms, vaginal microbiota, vaginal cells, and immune cells.

Co-incubation or

Techniques for evaluating

Microorganisms/Disease Host Cell type Interaction Key findings Ref.
9 P Co-culture? microbial cultures y 9
Pseudomonas aeruginosa, Candida albi-
o - CFU counts e - .
cans, C. tropicalis, C. parapsilosis, C. Dual species biofilm Mutual inhibition of biofilm for-
; e Co-culture CLSM ) ) 61
krusei, C. dubliniensis and C. glabra- - SEM (Bacteria-Yeast) mation
ta/Mixed biofilms
T. vaginalis, Gardenerella vaginalis, o ) Antagonist interaction: TV vs.
o ) ) ) Epithelial cells lines ) ) . o
Prevotela bivia, Lactobacillus acidophilus, ) Colorimetric assay ECL assay Pathogen-Host Cells- Lactobacillus spp. Synergic inter-
‘ ‘ of vagina, ectocer-  Co-culture L o ) , 50
L. crispatus and L. jen- ) ) Quantikine ELISA Microbiota action: TV vs. bacteria BV-
vix and endocervix
senii/Trichomoniasis and BV associated
G. vaginalis, Candida albicans, L. planta- Co-incubation (Pre- .
ELISA ) , Anti-inflammatory effect of Lacto-
rum,and L. Hela treatment post- ) Microbiota-Host cells ) 54
Luciferase assay bacillus spp.
fermentum/BV and VWC treatment)
C. glabrataand L. fermentum,
L. casej L. crispatus, Fluorescence microscopy ) ) Mechanism by Candida for toler-
) . - Co-culture Pathogen-Microbiota ) ] 41
L. paracasei L. gasseri, and L. Rham- CFU counts ating environmental stress
nosus/VVC
T. vaginalis and Escherichia co- ) ) ) ) Mechanism by TV interacts with
o o - Co-incubation RT-gPCR Pathogen-Microbiota . ) 47
li/Trichomoniasis microbiota
o o Flow cytometry Gene knockout Mechanism of TV survival under
T. vaginalis/Trichomoniasis - Transwell co-culture ) ) Pathogen-Pathogen ] 71
and adding back of TYMIFin TV nutrient stress
C. albicans, L. gasseri L. rhamnosus, Co-incubation Pre- Antagonism assay Crystal violet ) ) Antifungal and antivirulence activ-
) ) ) - ) ) Pathogen-Microbiota ) ) 40
L. acidophilus, and L. paracasei/NNVC incubation assay ity of Lactobacillus spp.
. L . ) ) C. albicans and G. vaginalis bio-
C. albicans, G. vaginalis, and Chlamydia ) Microbiota-Pathogen- ] ) 64
) o ) Hela Transwell co-culture Crystal violet assay films as a reservoir of C. tracho-
trachomatis/Chlamydia infection Host cell )
matis
) ) Secreted products of Lactobacil-
Streptococcus agalactiae, L. reuteri, L. ; ; ) o
) - , Human endometri- CFU counts Fluorescent nucle- Microbiota-Pathogen- lus spp. inhibited GBS growth,
gasseri, and L. crispatus/Neonatal infec- Co-culture 53

tions

al stromal cells

ic acid stain

Host cell

biofilm formation and invasion of
host cells

BV, Bacterial vaginosis; VVC, Vulvovaginal candidiasis; HelLa, Cervical cancer cell; TV, Trichomonas vaginalis; SEM, Scanning electron microscopy; TEM, Transmission electron microscopy; CFU, Colony forming units
assay; CLSM, Confocal laser scanning microscopy; ECL, Electrochemiluminescence; ELISA, Enzyme-linked immunosorbent assay, LDH, Lactate dehydrogenase assay; PCR, Polymerase chain reaction; RT-qPCR, Reverse
transcription and quantitative PCR; TvMIF, T. vaginalis macrophage migration inhibitory factor; XTT, 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; H.O-, Hydrogen peroxide; GBS, Group B Streptococcus; CFS, Cell-free supernatants; Ref,, References.
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TABLE 1 (continued) @ Summary co-incubation/co-culture studies on sexually transmitted infections (STIs) microorganisms, vaginal microbiota, vaginal cells, and immune cells.

Co-incubation or

Techniques for evaluating

Microorganisms/Disease Host Cell type Interaction Key findings Ref.
9 yp Co-culture? microbial cultures y 9
. ) Imaging o
Epithelial cells lines . ) G. vaginalis induces cell death
o ) ) LDH assay Microbiota-Pathogen- )
G. vaginalis and L. crispatus/BV of vagina, ectocer- Co-culture FCR Host cell and immune responses, but not L. 55
vix and endocervix d crispatus
ELISA
o ) ) Vaginal epithelial Imaging ) o
C. parapsilosis, L acidophilus, L. planta- ) ) CFS of Lactobacillus spp. inhibits
) squamous cell Transwell co-culture LDH assay Pathogen-Microbiota o ) o 68
rum, L. rhamnosus, and L. reuteri/VVC ) ) in vitro infection by C. parapsilosis
carcinoma XTT analysis
) ) Crystal violet Dual species biofilm E. coli modulates biofilm of C.
C. albicans and E. coliivWC - Co-culture ) ) 58
XTT assays (Yeast- Bacteria) albicans
- . . CFU counts ) ) ) )
T.vaginalis, L. gasseri, and G. vaginal- ) . ) ) Mechanism of TV interaction with
o o - Co-incubation RT-gPCR Microbiota-Pathogen ) ) 48
is/Trichomoniasis and BV ) microbiota
Enzymatic assay
C. albicans, Rhodotorula mucilaginosa, Crystal violet assay Ecological relationship within
Malassezia furfur, and Naganishia al- - Co-culture MTT assay Dual species biofilm yeast microbiota enhances path- 59
bida/\VVC Hemocytometer counts ogenicity during co-culture
) ) ) B TEM L. jensenii produces a bac-
L. crispatus, L. gasseri, and L. jensenii and o : ; ) o
o nalis/BY - Transwell Co-culture  Quantification of L-and D-lactic ~ Pathogen-Microbiota tereriocin-like substance that 67
. vaginalis
g acid and H202 inhibits G. vaginalis
o o o Fluorescence A ) . o
T. vaginalis, G. vaginalis, P. bivia, and Ato- Pathogen-Microbiota- Mechanism of cytotoxicity by TV
) . ) o Ects Transwell co-culture qgPCR ) ] 66
pobium vaginae /BV and Trichomoniasis Host cell and BV-associated bacteria
LDH assay
. . . . ) Lactic acid measure
C. trachomatis, L. crispatus, L. jensenii L. Fibroblasts and o ) ) , )
o o ) o Immunofluorescence staining Pathogen-Microbiota- Microbiota modulates C. tracho-
gasseri, L. iners, and G. vaginalis/ C. tra- cervical epithelial Transwell system ) o ) [619)
o ) Imaging Host cell matis infection
chomatis infection cells
Confocal
T.vaginalis, S. agalactiae, and L. in- CFU counts ) ) Impact of microbiota compaosition
o - Co-culture Pathogen-Microbiota o ) 43
ers/vaginitis Hemocytometer counts on T. vaginalis infection
) ) ) ) Mechanism by C. albicans alka-
L. crispatus and C. albicans/CVV - Transwell co-culture CFU counts Yeast-Microbiota 74

linizes an acidic environment

BV, Bacterial vaginosis; VVC, Vulvovaginal candidiasis; Hela, Cervical cancer cell; TV, Trichomonas vaginalis; SEM, Scanning electron microscopy; TEM, Transmission electron microscopy; CFU, Colony forming units
assay; CLSM, Confocal laser scanning microscopy; ECL, Electrochemiluminescence; ELISA, Enzyme-linked immunosorbent assay; LDH, Lactate dehydrogenase assay; PCR, Polymerase chain reaction; RT-qPCR, Reverse
transcription and quantitative PCR; TVMIF, T. vaginalis macrophage migration inhibitory factor, XTT, 23-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; H.02, Hydrogen peroxide; GBS, Group B Streptococcus; CFS, Cell-free supernatants; Ref, References.
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ration of regulatory factors and microorganism interrelation-
ships [38].

Among the key microbial players in the vaginal environ-
ment, Lactobacillus spp. play a crucial role in maintaining an
acidic pH producing lactic acid, which restricts the growth of
opportunistic microbes. Beyond acidification, lactobacilli inhibit
pathogen adherence, limit nutrient availability, and exert a fun-
gistatic effect on Candida spp., preventing yeast overgrowth
[39].

The protective role of Lactobacillus spp. is further support-
ed by studies on their antimicrobial metabolites. Itapary dos
Santos et al. (2019) demonstrated the antifungal and antiviru-
lence potential of metabolites produced by vaginal lactobacilli,
including L. gasseri, Lactobacillus rhamnosus, Lactobacillus
acidophilus and Lactobacillus paracasei. Among the 20 strains
tested, 15 secreted biosurfactants that reduced C. albicans
biofilm formation and adhesion [40]. In contrast, another study
identified a mechanism that enables C. glabrata—the second
most common species associated with VVC—to withstand
environmental stressors such as osmotic stress, low pH, and
exposure to carboxylic acids. The virulence of C. glabrata is
linked to the high osmolarity glycerol (HOG) response pathway,
which enhances its survival under acidic conditions created by
lactic and other weak carboxylic acids from Lactobacillus spp.,
as well as provides protection against oxidative stress induced
by macrophage activity [41].

However, not all Lactobacillus species contribute equally
to vaginal health. L. iners, for instance, lacks the capacity to
produce hydrogen peroxide, and its lactic acid production is
significantly diminished [42]. A study demonstrated that in a
co-culture with T. vaginalis, L. iners initially exhibited reduced
growth. However, it appears to adapt to the stress conditions
imposed by the protozoan and can survive prolonged incuba-
tion periods [43]. L. iners is frequently found in the vaginal mi-
crobiota of women with bacterial vaginosis [44] and, due to its
weak probiotic activity, a microbiota dominated by L. iners is
associated with STIs and adverse pregnancy outcomes [45].

Bacterial vaginosis (BV) affects reproductive-age women,
with 50% of cases being asymptomatic, increasing the risk of
acquiring HIV, Neisseria gonorrhea, T. vaginalis, and other STIs
[46]. A study using a bacterial colonization model explored the
interaction between BV-associated bacteria and T. vaginalis.
Epithelial cells were colonized by Lactobacillus spp., Gard-
nerella vaginalis, or Prevotella bivia, then co-infected with
T. vaginalis. The results showed that T. vaginalis reduced colo-
nization of epithelial cells by L. acidophilus, Lactobacillus cris-
patus, and L. jensenii. Additionally, the interaction between
G. vaginalis, P. bivia, and T. vaginalis was found to modulate the
immune system, amplifying pro-inflammatory responses [47].

Beyond interactions with lactobacilli, T. vaginalis also en-
gages in cooperative relationships with anaerobic bacteria
such as G. vaginalis, Atopobium vaginae, and P. bivia [48]. This
cooperation is likely driven by lateral gene transfer, through
which T. vaginalis acquired genes from the N1pC/P60 family,
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known for their role in bacterial peptidoglycan hydrolysis. Co-
culture studies with Escherichia coli, a vaginal microbiota
member, have shown that T. vaginalis exploits bacterial interac-
tions to enhance infection progression. In the presence of bac-
teria, N1pC/P60 proteins in T. vaginalis are upregulated, in-
creasing protozoan persistence in mixed cultures [49).

Additionally, co-incubation of T. vaginalis with L. gasseri re-
duces bacterial colony-forming units (CFU), triggered protozo-
an aggregation, and induced upregulation of TvN1pC gene
expression. However, these proteins did not inhibit the growth
of G. vaginalis, suggesting a specific role in disrupting vaginal
microbiota balance [50]. This study establishes N1pC/P60-
containing peptidases as key effectors in T. vaginalis interac-
tions with the vaginal microbiota, particularly lactobacilli. These
enzymes facilitate bacterial degradation both extracellularly
and post-phagocytosis, reinforcing the parasite’s ability to ma-
nipulate its microbial environment for survival and persistence.

Neonatal infections caused by Group B Streptococcus
(GBS) are linked to an increased risk of premature birth and
stilloirth [51]. GBS can asymptomatically colonize pregnant
women, creating a risk of transmission to newborn during
childbirth, particularly by aspiration [52]. A study investigating
the influence of the vaginal microbiota on invasive GBS strains
their interaction with human endometrial cells in co-culture
with various Lactobacillus strains and their supernatants. While
live Lactobacillus spp. did not significantly impact GBS growth
or biofilm formation, the secreted supernatants effectively in-
hibited GBS growth, biofilm development, and cellular invasion
(53.

The vaginal microbiota plays a crucial role in protecting
against pathogens, though its effectiveness depends on the
specific microorganisms present. A cell model infected with
G. vaginalis or C. albicans was used to evaluate the immuno-
modulatory effects of two Lactobacillus species. The results
demonstrated that Lactobacillus spp. reduced the release of
pro-inflammatory cytokines and suppressed NF-kB activation, a
process typically triggered when G. vaginalis or C. albicans
interact with HelLa cells [564]. Similarly, a co-culture model of
L. crispatus or G. vaginalis with endocervical, ectocervical or
vaginal cells revealed that G. vaginalis induced cell death,
compromised cell integrity, and triggered an epithelial immune
response through NF-kB activation and increased pro-
inflammatory cytokine release. In contrast, L. crispatus main-
tained epithelial barrier integrity and did not induce inflamma-
tory response [55].

Microbial interactions within the vaginal microbiota further
influence infection dynamics, particularly through biofilm for-
mation, a process that enhances survival and resistance to
antimicrobial agents. Many fungi, including those from the
genera Candida, Clavispora, Malassezia, Rhodotorula, Aspergil-
lus, and Leptosphaerulina, coexist in this environment, foster-
ing interactions that may contribute to pathogenicity [66, 571.
Candida species, for instance can form heterogeneous biofilms
with other microorganisms [568]. C. albicans has been shown to
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interact with Malassezia spp. suggesting a symbiotic relation-
ship characterized by increased fungal growth, mixed biofilms,
and enhanced germ tube formation during co-culture [59].

Understanding microbial interactions within biofilms is es-
sential, as biofilms exhibit inherent resistance to antimicrobial
agents, complicating the treatment of co-occurring infections
[60]. In a dual-species biofilm involving various Candida spe-
cies and Pseudomonas aeruginosa, the presence of bacteria
inhibited biofilm formation, as indicated by a reduction in CFU
for both Candida spp. and P. aeruginosa. The sparse biofilm
architecture was confirmed using scanning electron micros-
copy (SEM) and confocal laser scanning microscopy (CLSM)
[61]. Another study assessed the effect of E. coli on C. albicans
biofilm formation using vaginal swab isolates. The results
showed a reduction in biofilm formation, as observed through
CLSM and SEM, suggesting that E. coli may function as a mi-
crobial reservoir that influences C. albicans biofilm develop-
ment [62].

Permeable membrane technique

The permeable membrane technique (Transwell system®)
utilizes a permeable membrane in multi-well plates to separate
cells, enabling the exchange of signaling molecules without
direct contact [38]. This polycarbonate membrane divides the
system into an upper insert and a lower reservoir. While the
system is easy to set up and requires only a small culture vol-
ume, careful selection of membrane porosity is essential to
ensure proper metabolite diffusion. This co-culture method
mimics in vivo conditions, facilitating the identification of extra-
cellular molecules released during interactions [63]. Leverag-
ing this system allows for deeper insights into host-pathogen
interactions, the antimicrobial properties of Lactobacillus spp.,
and the persistence mechanisms of vaginal pathogens.

The interaction between Chlamydia trachomatis and bio-
films of C. albicans or G. vaginalis was investigated using a
Transwell co-culture system, where biofilms were placed on
the upper platform and a Hela cell monolayer on the lower part.
The results demonstrated that C. trachomatis could survive
within the biofilm while still inducing inclusions in the cell mon-
olayer, confirming that it retains its infectious proprieties within
the biofilm [64]. Further studies using a three-dimensional cer-
vical epithelium model, composed of fibroblasts, epithelial cells,
and various Lactobacillus species, revealed that Lactobacillus
spp. producing D-lactic acid provided protection against C.
trachomatis. In contrast, L. iners, which does not produce this
isoform, was associated with increased susceptibility to infec-
tion, suggesting that women with an L. iners-dominated micro-
biota are more vulnerable to chlamydial infection [65].

A polymicrobial infection model employing the Transwell
system assessed the influence of T. vaginalis and BV-
associated bacteria on the paracellular permeability of ecto-
cervical cells (hECs). The BV-associated bacteria including
G. vaginalis, P. bivia, and A. vaginae, are key members of the
CST-IV vaginal microbiota group. The study found that these
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microorganisms collectively increased the paracellular perme-
ability of hECs, elevated phosphatase activity - indicating
compromised monolayer integrity - and upregulated the ex-
pression of tight junction proteins and pro-inflammatory cyto-
kines (IL-6 and TNF- o). These findings underscore the micro-
biota’s significant role in trichomoniasis pathogenesis [66].

The antimicrobial potential of Lactobacillus spp. against
vaginal pathogens has also been explored using Transwell co-
culture systems. One study found that L. jensenii produces a
bacteriocin-like substance with specific bactericidal activity
against G. vaginalis, Gardnerella piotii and Gardnerella leo-
poldii, without affecting the growth of other uropathogens or
Lactobacillus species such as L. crispatus and L. gasseri [67].
Another study evaluated the antimicrobial properties of L. aci-
dophilus, Lactobacillus plantarum, L. rhamnosus, and Lactoba-
cillus reuteri against Candida parapsilosis in a co-culture sys-
tem comprising vaginal epithelial cells, bacteria, and yeast. The
results demonstrated that all tested Lactobacillus species in-
hibited the virulence factors of C. parapsilosis by reducing its
proliferation, viability, and metabolic activity, suggesting a
postbiotic-like protective effect against those mucosal infec-
tions [68].

The pathogens have acquired mechanisms for persistence
in the vaginal environment though interactions with the host.
Human macrophage migration inhibitory factor (huMIF) plays a
crucial role in regulating cell growth and survival [69].
T. vaginalis shares a homologous protein with its host, known
as TvMIF, which enhances the protozoan’s survival during
nutrient starvation [70, 71].

To investigate the role of this protein, a Transwell co-
culture system was employed, in which parasites overexpress-
ing TVMIF were separated by a membrane from those carrying
an empty vector. Under serum starvation, the TvMIF-
overexpressing parasites exhibited significantly increased sur-
vival, whereas TvMIF knockout reduced parasite viability. This
survival mechanism is activated under nutrient deprivation, as
TvMIF expression and secretion are upregulated. Secreted
TvMIF enhances parasite survival through an intracellular posi-
tive-feedback loop that promotes its own expression and se-
cretion. Additionally, TvMIF inhibits apoptosis, facilitating para-
site persistence in the urogenital tract — an otherwise unfavor-
able environment. Chen et al. (2018) demonstrated that this
conserved protein plays a crucial role in parasite survival and
mediated host-pathogen crosstalk [71]. The metabolic activi-
ties of vaginal microorganisms further shape microbial interac-
tions. C. albicans, for example, metabolizes amino acids, lead-
ing to ammonia accumulation and subsequent alkalinization of
the vaginal environment [72]. This pH shift promotes C. albi-
cans' transition from yeast to filamentous growth, a key viru-
lence factor [73]. A study using a Transwell co-culture system
examined whether ammonia production by C. albicans affects
the growth of L. crispatus, a known fungal antagonist. The re-
sults showed that L. crispatus growth remained unaffected by
the alkalinization caused by C. albicans, suggesting that other
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mechanisms contribute to dysbiosis in the vaginal ecosystem
[74].

By utilizing Transwell-based co-culture models, research-
ers continue to uncover the complex interplay between the
vaginal microbiota and pathogens, shedding light on protec-
tive and pathogenic mechanisms that influence vaginal health.

CONCLUSIONS

Co-culture systems provide valuable insights into microbial
interactions, including gene and protein crosstalk, the influ-
ence of microbiota on pathogen persistence within the host,
producing antimicrobial substances or disease-promoting
factors. Over the past 24 years, co-culture and co-incubation
techniques have significantly advanced our understanding of
the complex interactions among microbiota, host cells, patho-
gens, and biofilms. This review focuses on studies related to
trichomoniasis, bacterial vaginosis, chlamydia, neonatal infec-
tions, and mixed biofilms, emphasizing the critical role of mi-
crobiota composition in infection dynamics and host defense
mechanisms. While some microorganisms counteract patho-
gen colonization, others interact with opportunistic microbes,
increasing disease pathogenicity and complicating treatment
strategies. Co-culture techniques have been instrumental in
studying pathogen virulence factors, immune cells responses
to infections, and the ecological interactions that contribute to
pathogenicity in the reproductive tract. Furthermore, these
platforms could serve as effective models for mimicking the in
vivo environment in laboratory settings. Moving forward, co-
culture models will continue to be a powerful tool for unravel-
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