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ABSTRACT  Mitochondria are essential organelles that form a dynamic network 

within cells. The fusion, fission, and transport processes among mitochondria 

must reach a balance, which is achieved through complex regulatory mechanisms. 

These dynamic processes and regulatory pathways are highly conserved across 

species and are coordinated to help cells respond to environmental stress. The 

budding yeast Saccharomyces cerevisiae has become an important model orga-

nism for studying mitochondria dynamics due to its genetic tractability and the 

conservation of key mitochondrial regulators. Previous research on mitochondria 

dynamics in yeast has provided valuable insights into the regulatory pathways in 

eukaryotic cells. It has helped to elucidate the mechanisms related to diseases 

associated with disrupted mitochondria dynamics. This review explores the 

molecular mechanisms underlying mitochondria dynamics and their physiological 

roles in Saccharomyces cerevisiae. The knowledge we learned from the primary 

eukaryotic yeast cell will aid us in advancing future research on the regulatory 

mechanisms of mitochondria in both health and disease. 
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INTRODUCTION 

Endosymbiotic mitochondria maintain double-membrane features 

and circular genomes in eukaryotes [1]. Mitochondria are involved 

in almost all essential metabolic activities, including fatty acid 

oxidation, iron-sulfur cluster biogenesis, energy transformation, 

calcium homeostasis, and apoptosis in eukaryotic cells [2]. These 

semiautonomous organelles have their own transcription and 

translation systems [3]. The mitochondrial genome (mtDNA) en-

codes genes required for the assembly of oxidative phosphoryla-

tion complexes. Mitochondrial translation coordinates with the 

cytosolic translation system to synthesize oxidative phosphoryla-

tion complexes to meet cellular energy demands [3]. Recently, 

new roles of mitochondria have been vigorously explored in dif-

ferent model organisms. For example, mitochondria serve as pro-

teasomes that accumulate unfolded proteins for protein degrada-

tion [4]. Additionally, mammalian mtDNA nucleoids can be ex-

truded into the cytoplasm and activate immune responses [5, 6]. 

These reports indicate that mitochondria serve not only as cellular 

powerhouses but also as hubs for pivotal metabolism. 

Microscopy with mitochondria-targeting dyes and fluorescent 

proteins has demonstrated the dynamic alternations of the orga-

nellar network in real-time in yeast and mammalian cells. These 

morphological changes can be attributed to two major processes: 

fission and fusion [7]. Proper regulation of the dynamic mitochon-

drial network is crucial for maintaining organellar quantity and 

quality. The fission process facilitates mitochondrial trafficking 

and inheritance. Additionally, damaged and depolarized mito-

chondria can be sequestered for degradation after fission. Con-

versely, the fusion process promotes the exchange of components 

to reduce detrimental accumulation in individual mitochondria [8]. 

Mitochondria dynamics regulate mitochondrial quality and orga-

nellar communication [9]. Abnormal mitochondrial morphologies 

were found in degenerative neurons, premature aging, and tumor 

cells [10]. The ability to shift the balance of mitochondria dynam-

 
 

doi: 10.15698/mic2025.08.859 
Received originally: 04.05.2025;  
in revised form: 10.07.2025,  
Accepted 30.07.2025, 
Published 27.08.2025.  
 
 
Keywords: mitochondria, yeast, dynamic 
organelles. 
 
 
Abbreviations:  
CJ – cristae junction,  
ER – endoplasmic reticulum, 
ERMES – ER–mitochondria encounter 
structure, 
MDC – mitochondria-derived compartment,  
MDV – mitochondria-derived vesicle, 
MICOS – mitochondrial contact site and 
cristae organizing system, 
mtDNA – mitochondrial DNA. 
 
 

 



C.-L. Chen et al. (2025)  Mitochondria dynamics in yeast cells 

 
 

OPEN ACCESS | www.microbialcell.com 243 Microbial Cell | Vol. 12 

ics has become a critical index for evaluating the health of mito-

chondria. Genetic manipulation to restore the balance of disrupt-

ed mitochondria dynamics was demonstrated to rescue disease-

associated phenotypes [11]. Hence, the regulatory factors of mi-

tochondria dynamics have been scrutinized recently. Mitochon-

drial dynamic factors are classified as either fusion or fission fac-

tors. Additional proteins were discovered to facilitate the shaping 

of the mitochondrial network. These factors have been shown to 

regulate mitochondrial fission and fusion through either specific 

protein-protein interactions or unique enzymatic machinery. 

However, evidence has indicated that unidentified factors, which 

may participate in redundant pathways or become active under 

particular conditions, remain to be characterized. 

The budding yeast Saccharomyces cerevisiae is a powerful 

model for easy genetic manipulation, and its genome is highly 

conserved compared to that of higher eukaryotes such as mam-

mals. Additionally, budding yeast has a short cell cycle to prolifer-

ate, making them helpful in establishing replicative or chronologi-

cal senescence research [12]. Scientists have utilized the budding 

yeast as a model organism to elucidate the underlying molecular 

mechanisms of mitochondria dynamics (Figure 1). One unique 

advantage of this primary eukaryotic model is that yeast can sur-

vive under respiratory growth defects, i.e., the rho0 strain. This 

phenomenon is a powerful feature of the acquisition of mito-

chondrial dysfunction-related phenotypes. Furthermore, yeast has 

been utilized to model numerous human mitochondrial diseases, 

including Parkinson’s disease [13, 14], Barth syndrome [15, 16], 

Leigh syndrome [17, 18], and Friedreich’s Ataxia [19, 20]. These 

models enable functional validation of disease-associated gene 

mutations and facilitate preliminary drug or compound screening 

for therapeutic development. The unique shape of budding yeast 

cells makes them an effective platform for examining mitochon-

drial network morphology and distribution [21]. These features 

provide advantages for characterizing the regulatory mechanisms 

of mitochondria dynamics in yeast. To date, abundant evidence 

has shown that mitochondrial network morphology is present in 

distinct types caused by deletions of specific genes. To better 

understand mitochondria dynamics in yeast cells, we reviewed 

the literature on the dynamic mechanisms and physiological roles 

of mitochondria in budding yeast. 

 
LARGE GTPases CONSTITUTE THE PROMINENT PROTEIN 
FAMILY THAT MEDIATES MITOCHONDRIA DYNAMICS 

Mitochondrial networks continuously reorganize in eukaryotic 

cells [22]. Mitochondria dynamics are executed mainly by fission 

and fusion processes [2]. In vegetative growing yeast cells, mito-

chondria are present in long tubules at the cell cortex, that have 

few branches (Figure 2A). We can monitor frequent mitochondrial 

fission and fusion events via real-time microscopy by expressing 

mitochondrial-targeting fluorescent proteins. These dynamic pro-

cesses are conducted by a group of large dynamin-related GTPase 

proteins, such as Dnm1 and Fzo1 in yeast (Drp1 and Mfn1/2 in 

mammalian cells), which are often referred to as mitochondria 

dynamics factors [23-25]. Accordingly, mitochondrial fission and 

fusion are accompanied by GTP hydrolysis, which is thought to 

alter the protein conformation of dynamic factors to facilitate 

fusion and fission [26]. This phenomenon can be regulated by 

post-translational modifications in mammalian cells [27-29]. The 

human orthologs of dynamic factors are listed in Table 1. 

In yeast mitochondrial fission, the Dnm1-Fis1 axis is the pri-

mary regulatory pathway [30]. Dnm1 is an 85-kDa cytosolic 

GTPase that participates in mitochondrial fission [23, 25]. It is 

recruited to constriction sites and assembles into a spiral/ring 

structure to excise the mitochondrion into two halves [31]. Inter-

estingly, only a subset of mitochondria-associated Dnm1 clusters 

undergo GTP hydrolysis to drive active fission [32]. Dnm1 defects 

cause a hyperfused, mesh-net mitochondrial morphology with 

short tubules extending from the net (Figure 2B, C) [25]. Fis1 is a 

mitochondrial outer membrane protein that serves as a receptor 

for Dnm1, regulating Dnm1 recruitment via physical interactions 

[33]. Two adaptors, Mdv1 and Caf4, also participate in the fission 

process by interacting with Dnm1 and recruiting Dnm1 to the 

mitochondrial outer membrane alongside Fis1 [32, 34]. Notably, 

Mdv1, but not Caf4, is required to activate membrane scission 

with Dnm1 [33]. Mesh-net mitochondria have also been found in 

∆fis1 and ∆mdv1∆caf4 cells [34]. Recently, a small mitochondrial 

intermembrane space protein, Atg44/Mdi1, has been character-

ized as a fission factor. Although lacking a GTPase domain, Atg44 

coordinates with Dnm1 to facilitate mitochondrial fission [35, 36]. 

Notably, Atg44 mediates mitophagy, a selective degradation of 

mitochondria by autophagy machinery, by executing mitochon-

drial fission independently of Dnm1. Moreover, in vitro analysis 

suggests that Atg44 accumulates near the lipid membranes, po-

tentially promoting membrane bending and contributing to com-

plete mitochondrial fission [37]. Mitochondrial fission is primarily 

conducted through a stepwise mechanism, including coordinated 

interactions of Dnm1, Fis1, Mdv1, and Caf4, with additional modu-

lation by Atg44 (Figure 1C). Beyond these core components, ge-

netic screenings identified additional proteins aimed at manifest-

ing mitochondrial fission pathways. One example is Mdm33, 

which regulates mitochondrial membrane lipid homeostasis to 

influence morphological changes. An increase in Dnm1-dependent 

fragmented mitochondria has been reported in MDM33-

overexpressing cells [38]. The ∆mdm33 strain possesses lariat 

mitochondria (Figure 2D). Although this morphology is unlike the 

mesh-net morphology found in ∆dnm1, an elongated, irregular 

mitochondrial network makes Mdm33 a potential regulator of 

mitochondrial fission [39]. Another example is Mdm36, an antag-

onist of mitochondrial fusion machinery. Loss of Mdm36 reduces 

the number of Dnm1 foci on mitochondria and decreases the ratio 

of mitochondria associated with the cell cortex [40]. These pheno-

types indicate that Mdm36 may also be a supportive adaptor for 

mitochondrial fission.  

Mitochondrial fission contributes to mitochondrial derivatives 

and organellar activities, including the formation of mitochondria-

derived vesicles (MDVs), peroxisomes, and the engulfment of 

mitophagosomes [41-43]. MDV was first reported by Heidi 

McBride’s group as a mechanism for transporting mitochondrial 

proteins to peroxisomes as part of a proteostasis pathway in   
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FIGURE 1 ⬤  Scheme of the factors regulating mitochondria dynamics in yeast cells. (A) Fission, fusion, and transport processes regulate mitochondria dynam-
ics in yeast. This cartoon provides an overview of the regulators that participate, including plasma membrane tethers, ER-mitochondria encounter structure 
(ERMES), mitophagy, proteostasis, and cristae organization. Indicated boxes correspond to separate panels (B-I), each illustrating the detailed molecular mech-
anisms of the indicated dynamic process. 
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mammals [44]. In senescent yeast, a functionally equivalent pro-

tein transport pathway involves the production of mitochondrial-

derived compartments (MDCs) for selectively sorting mitochon-

drial proteins [45]. MDC generation requires Dnm1/Fis1 machin-

ery or other specific factors to facilitate fission [46]. Under ra-

pamycin treatment, MDC formation is supported by Dnm1 and 

the endoplasmic reticulum–mitochondria encounter structure 

(ERMES) [45, 47]. Additionally, Dnm1 plays a role in mitophagy by 

interacting with the Atg11 scaffold protein to promote mitochon-

drial fission and further clearance of damaged mitochondria [48] 

(Figure 1G). 

Concerning yeast mitochondrial fusion, the Fzo1-Mgm1-Ugo1 

pathway has been well characterized. Fzo1 is a 97 kDa mitochon-

drial outer membrane protein. It is also known as yeast mitofusin, 

with a GTPase domain facing the cytoplasm [24, 49]. Fzo1 facili-

tates the docking of two proximal mitochondria and the subse-

quent fusion of their outer membranes (Figure 1D). However, in 

vitro assays have revealed that Fzo1 overexpression leads to the 

opposite effect, as fragmented mitochondria accumulate. This 

result is potentially explained by Fzo1 overoccupying the mem-

brane, which may disrupt the interactions of lipid molecules nec-

essary for mitochondrial fusion [50]. The turnover of Fzo1 is regu-

lated by the proteolytic mechanism rather than transcriptional 

control (Figure 1H). Overexpression of Cdc48, an AAA ATPase with 

protein-unfolding activity, promotes the removal of Fzo1 clusters. 

In the exponential growth phase (log phase), the Fzo1 level is 

controlled by two deubiquitinases, Ubp12 and Ubp2, both of 

which are regulated by Cdc48 [51]. Under senescence or vacuolar 

inhibition conditions, Fzo1 is regulated by E3 ubiquitin ligases 

SCFMdm30 (Skp1-Cullin-F-box complex with Mdm30 as the F-box 

protein) and Rsp5 through a proteolytic cascade [52]. Mgm1 is a 

99 kDa GTPase localized at the mitochondrial inner membrane, 

particularly regulating inner membrane fusion [53] (Figure 1D). In 

vitro evidence has shown that Mgm1 promotes fusion by tether-

ing mitochondrial membranes [54]. In vivo, Mgm1 defects cause 

the aggregation and fragmentation of mitochondria [53]. Mgm1 

has two isoforms, l-Mgm1 and s-Mgm1, which are processed by 

the mitochondrial protease Pcp1 [55]. Mgm1 isoforms are crucial 

for maintaining the ultrastructure of the mitochondrial inner 

membrane, with l-Mgm1 enriched in the cristae membrane and s-

Mgm1 in the inner boundary membrane [56]. Intriguingly, impair-

ing the proteasome can restore mitochondrial fusion activity 

without Fzo1 by increasing the ratio of s-Mgm1/l-Mgm1 [57]. 

Ugo1, a mitochondrial outer membrane protein, regulates the 

Fzo1-Mgm1 interaction to promote the fusion of the mitochon-

drial outer and inner membranes [58, 59]. Fzo1, Mgm1, and Ugo1 

form the axis of fusion factors that regulate mitochondrial fusion. 

Losing one of these genes results in fragmented mitochondria 

(Figure 2E).  

Cristae formation, which refers to the ultrastructure of the 

mitochondrial inner membrane, is tightly regulated by three key 

factors in budding yeast: the mitochondrial contact site and cris-

tae organizing system (MICOS) complex, fusion machinery, and 

the dimerization of F1F0-ATP synthases [60] (Figure 1I). Typically, 

cristae present a lamellar morphology through invagination of 

inner membrane. However, defects in the aforementioned factors 

can lead to abnormal cristae structures, such as onion-like or 

swollen architectures, as validated by electron microscopy [61]. 

The MICOS complex consists of six subunits: Mic10, Mic12, Mic19, 

Mic26, Mic27, and Mic60, and is localized at the cristae junction 

(CJ) between the inner boundary membrane and the crista mem-

brane [62, 63]. The stabilization of CJs has been shown to pre-

serve the inner membrane ultrastructure and respiration capabil-

ity [63, 64]. Fusion factor Mgm1 is also involved in the formation 

of lamellar cristae. Immuno-electron microscopy results have 

revealed that the s-Mgm1 is predominantly localized at the inter-

membrane space, suggesting that s-Mgm1 facilitates cristae for-

mation immediately following outer membrane fusion events [56, 

60]. The bending region of the cristae membrane requires the 

dimerization of F1F0-ATP synthases. Loss of dimerization-

associated subunits Atp20/Atp21 disrupts cristae morphology [65, 

66]. Studies have demonstrated that dimerization of F1F0-ATP 

synthase is formed in rows to maintain the curvature of the inner 

mitochondrial membrane in yeast [67, 68]. A recent study has 

revealed Mmc1/Mug99, an inner mitochondrial membrane pro-

tein, in Schizosaccharomyces pombe (fission yeast) as a novel 

FIGURE 1 (continued) ⬤  Scheme of the factors regulating mitochondria dynamics in yeast cells. (B) Transport: (1) The Myo2-Mmr1-Ypt11 complex carries 
mitochondria by connecting them along with actin cables to facilitate anterograde movement through the bud neck of the yeast cell. (2) Srv2 interacts with 
Dnm1 on mitochondria to promote fission. (C) Fission: Dnm1 is recruited from the cytosol to the mitochondrial surface by its receptor Fis1, with adaptors Mdv1 
and Caf4 facilitating its recruitment. At the fission site, Dnm1 assembles into a spiral-ring structure to constrict the outer membrane. Atg44/Mdi1 in the inter-
membrane space generates inner membrane curvature to complete the fission process. The ER and ERMES, which localize at fission sites, are meant to promote 
fission. mtDNA nucleoids are segregated during fission. (D) Fusion: Mitochondrial outer membrane (MOM) is initiated by docking via Fzo1, which promotes the 
closing and further fusion of two mitochondria. Fzo1 at MOM and Mgm1 at mitochondrial inner membrane (MIM) are linked by Ugo1 to coordinate subsequent 
MIM fusion. Mgm1 isoforms are processed by the mitochondrial protease Pcp1. (E) Tether: Num1 and Mfb1 act as independent plasma membrane anchors that 
link mitochondria to the cell cortex, maintaining proper mitochondrial distribution. (F) ERMES: The ER-mitochondria encounter structure is composed of 
Mmm1, Mdm10, Mdm12, and Mdm34, which localize at contact sites of ER (connected by Mmm1) and mitochondria (connected by Mdm10-Mdm12-Mdm34). 
ERMES marks the potential fission sites and contributes to mtDNA maintenance. Gem1, regulated by Arf1/2 and Gea1/2, regulates ERMES size and number. 
Sar1 is an ER protein that promotes membrane curvature and lipid exchange between the ER and mitochondria to maintain mitochondrial morphology. (G) 
Mitophagy: Damaged mitochondria are selectively removed by the mitochondrial fission process. Dnm1 interacts with Atg11, a scaffold protein at the phago-
phore assembly site, to support mitochondrial clearance. (H) Proteostasis: Fzo1 turnover is controlled through proteolytic and ubiquitin-dependent pathways. 
During log phase, the deubiquitylases Ubp12 and Ubp2 modulate the Fzo1 level by controlling Fzo1 ubiquitinylation status, and Cdc48 promotes the degrada-
tion of Ubp12, thus stabilizing Ubp2 and facilitating fusion. In Arf1/2 mutants, Fzo1 forms clusters that hinder fusion, which are removed by Cdc48 overexpres-
sion. Under vacuolar stress, Fzo1 is targeted for ubiquitination by the E3 ubiquitin ligases SCFMdm30 and Rsp5, causing fusion inhibition. (I) Cristae: The ultrastruc-
ture of MIM is shaped by three regulators, the mitochondrial contact site and cristae organizing system (MICOS), Mgm1, and F1F0-ATP synthase dimers. MICOS 
localizes at the cristae junction between inner boundary membrane and cristae membrane. Mgm1 mostly localizes at flat lamellar region of cristae. F1F0-ATP 
synthase dimers assembles in rows to generate curvature at cristae tips. 
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factor that facilitates cristae maintenance by interacting with 

Mic60 and Mic26. However, there is no identified homolog of 

Mmc1 in budding yeast or humans. It is noteworthy that the ex-

pression of SpMmc1 in S. cerevisiae lacking MICOS components 

was able to restore respiratory growth defects. However, it was 

unable to rescue the altered mitochondrial morphology resulting 

from disrupted cristae structure. [69]. These findings demonstrate 

the coordinated regulation of MICOS, Mgm1, and F1F0-ATP syn-

thase in maintaining cristae formation, which is critical for respira-

tory function and mtDNA integrity. 

In addition to conventional dynamic factors that directly bind 

to the mitochondrial membrane, researchers have endeavored to 

identify novel factors involved in regulating mitochondria dynam-

ics. Accumulating evidence has indicated alternative mechanisms 

that govern mitochondrial network morphology and distribution. 

In yeast, Clu1, a functional homolog of the cluA gene in Dictyoste-

lium discoideum, has been shown to mediate mitochondrial mor-

phology similarly to Dnm1. Knocking out of CLU1 results in aggre-

gated or hyperfused mitochondria without impairing cell growth 

and respiratory function [70]. Another evidence pertains to AAC2, 

an adenine nucleotide translocator localized at the mitochondrial 

inner membrane. The repression of AAC2 causes mitochondrial 

fragmentation, even though AAC2 has been confirmed to be dis-

pensable for mitochondrial fusion [71]. The underlying mecha-

nism by which Clu1 or Aac2 operates remains to be explored. 

Several linker proteins have been proposed at the cell cortex to 

stabilize contacts between mitochondria and the cortical mem-

brane. Num1 and Mfb1 independently mediate mitochondrial 

anchoring in the mother cell (Figure 1E), while Mmr1 interacts 

with Myo2 to transport mitochondria into the daughter cell [72-

74] (Figure 1B). Genetic disruption of these anchors causes ab-

normal mitochondrial distribution and partial collapse of the mi-

tochondrial network (Figure 2F). Sym1, identified as the yeast 

homolog of the human MPV17, which is mutated in a mitochon-

drial DNA depletion syndrome, also contributes to inner mem-

brane integrity. The deletion of SYM1 caused annihilated cristae 

structure, defective succinate dehydrogenase, and reduced res-

piratory activity [75]. 

An inability to change the balance of mitochondria dynamics 

would aid pathogenesis in mammalian cells. Thus, characterizing 

the dynamics factor in yeast cells is critical for all cells. Large 

GTPases work alongside other factors through protein-protein 

interactions and GTP hydrolysis to maintain constant mitochon-

drial fission and fusion. Dynamic processes are important for 

maintaining the quantity and quality of mitochondria. Table 1 lists 

the abovementioned factors.  

FIGURE 2 ⬤ Illustration of mitochondrial morphology phenotypes in yeast cells. Representative mitochondrial morphology phenotypes are demonstrated in 
each panel, which are identified in the indicated genetic ablation or mutation strains. (A) In vegetative wild-type yeast, mitochondria present a long tubular 
network along the cell cortex. (B-C) Fission defects give rise to a mesh net (B) or collapsed net (C) morphology. (D) Disintegrated lipid homeostasis of mitochon-
dria induces a lariat-like network. (E) Fusion defects result in fragmented mitochondria. (F-H) Loss of function in inter-organellar contacts with mitochondria 
causes abnormal distribution of big puncta mitochondria (F-G) or globular (H) mitochondrial morphology. (I) Loss of actin organization caused hyperfusion of 
mitochondria. 
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TABLE 1 ⬤ Mitochondria dynamics players in Saccharomyces cerevisiae. 

Yeast Gene Human Ortholog Role and Function Reference 

Major factors involved in mitochondrial fission 

DNM1 DRP1 Cytosolic GTPase regulates mitochondrial outer membrane fission. [23, 25] 

FIS1 FIS1 Mitochondrial outer membrane GTPase regulates recruitment of Dnm1. [33] 

MDV1 - 
GTPase on the surface of mitochondrial outer membrane interacts with Dnm1 and Fis1 to facilitate mitochondrial 

fission. 
[32] 

CAF4 - 
GTPase on the surface of mitochondrial outer membrane stabilizes Dnm1-Fis1 interaction to facilitate mitochondrial 

fission. 
[34] 

ATG44/MDI1 - Mitochondrial intermembrane space protein generates membrane fragility to complete membrane scission [35, 36] 

Major factors involved in mitochondrial fusion 

FZO1 MFN1/2 Mitochondrial outer membrane GTPase regulates mitochondrial outer membrane fusion. [24, 49] 

MGM1 OPA1 
Mitochondrial inner membrane GTPase regulates mitochondrial inner membrane fusion and maintains lamellar cristae 

structure. 
[53, 54] 

UGO1 

SLC25A46 

(functional 

[114]) 

Mitochondrial outer membrane GTPase interacts with Fzo1 and Mgm1 to promote mitochondrial fusion. [58, 59] 

Accessory mediators for mitochondrial fission and fusion 

MDM33 
CCDC51 

(structural [115]) 
Mitochondrial inner membrane protein regulates mitochondrial inner membrane fission and lipid homeostasis. [38, 39] 

MDM36 - Mitochondrial outer membrane protein regulates Dnm1-Num1 interaction with mitochondria on cell cortex. [40] 

NUM1 - Cell cortex protein regulates mitochondria anchor on cell cortex. [73] 

MFB1 - Mitochondria-associated F-box protein regulates mitochondria anchor on cell cortex. [72, 73] 

MMR1 - Mitochondria-associated protein supports mitochondria-actin linker for proper transport. [116] 

MYO2 MYO5A/B/C Mitochondria-associated protein supports mitochondria-actin linker for proper transport. [89, 116] 

MMM1 - ERMES core protein regulates mitochondrial fission and MDC formation. 
[47, 79, 

80] 

MDM10 - ERMES core protein regulates mitochondrial fission and MDC formation. 
[47, 79, 

81] 

MDM12 - ERMES core protein regulates mitochondrial fission and MDC formation. 
[47, 79, 

82] 

MDM34 - ERMES core protein regulates mitochondrial fission and MDC formation. 
[47, 79, 

83, 86] 

GEM1 RHOT (Miro) ERMES associated protein regulates MDC formation. [47] 

SAR1 SAR1 Small GTPase on ER regulates the size of ER-mitochondria contacts and membrane curvature of mitochondria and ER. [93] 

SRV2 CAP Actin-binding protein interacts with Dnm1 to regulate mitochondrial fission. [102, 104] 

Regulatory mediators in mitochondrial fission and fusion 

CDC48 VCP Cytosolic AAA-ATPase regulates ubiquitinylation of Fzo1. [51] 

MDM30 - Cytosolic F-box protein regulates ubiquitinylation of Fzo1. [117, 118] 

UBP2, UBP12 USP Cytosolic deubiquitylase regulates ubiquitinylation of Fzo1. [51] 

PCP1 PARL Mitochondrial inner membrane protease regulates proteolytic process of Mgm1. [55] 

ARF1, ARF2 ARF Small GTPase on Golgi negatively regulates Fzo1 turnover. [91] 

GEA1, GEA2 GBF1 Guanine nucleotide-exchange factor of Arf1/2 negatively regulates Fzo1 turnover. [91] 

Other factors related to mitochondria dynamics 

MIC10, MIC12, 

MIC19, MIC26, 

MIC27,    MIC60 

Mic10, Mic12, 

Mic19, Mic26, 

Mic27,       Mic60 

MICOS subunits in mitochondrial inner membrane regulates mitochondrial inner membrane ultrastructure. [62-64] 

ATP20, ATP21 ATP5L, ATP5I F1F0-ATP synthase subunit regulates dimerization and maintains membrane curvature of cristae. [65-67] 

AAC2 ANT1 Mitochondrial adenine nucleotide translocator regulates mitochondrial fusion. [71] 

CLU1 CLUH Cytosolic protein regulates mitochondrial outer membrane fission. [70] 

SYM1 MPV17 Mitochondrial inner membrane protein regulates mitochondrial inner membrane ultrastructure. [75] 
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THE ENDOPLASMIC RETICULUM PLAYS A CRITICAL ROLE IN 

MITOCHONDRIAL FISSION 

Interorganellar contacts facilitate the exchange of lipids between 

mitochondria and other membrane-bound organelles, such as the 

endoplasmic reticulum (ER) and vacuoles, to create a dynamic 

circulating system [76]. Many reports have demonstrated that ER-

mitochondria contacts modulate mitochondrial division, lipid 

transfer, and ion homeostasis [77]. In budding yeast, these con-

tacts are regulated by ERMES, which forms a bridge-like structure, 

as revealed by cryo-correlative light and electron microscopy 

(cryo-CLEM) [78] (Figure 1F). ERMES consists of four core pro-

teins: Mmm1, Mdm10, Mdm12, and Mdm34 [79]. The genetic 

disruption of any of these four genes results in abnormal spherical 

mitochondrial morphology and impaired mitochondrial inher-

itance [80-83] (Figure 2H). Based on these findings, ERMES is con-

sidered to play a critical role in mitochondria dynamics. Jodi Nun-

nari's group was the first to report how ER contributes to mito-

chondrial fission in yeast and mammalian cells. Their study 

demonstrated ER tubules wrap around mitochondria and mark 

the mitochondrial fission site [84] (Figure 1C). The fission factor 

Dnm1 assembles into clusters at these sites and executes mito-

chondrial division. ERMES foci were later recognized as ER-

associated mitochondrial fission sites. Recent research has re-

vealed that ER tubules and Dnm1 denote fission and fusion sites 

on mitochondria [85]. Since mtDNA nucleoid segregation has 

been demonstrated to be associated with mitochondrial division, 

studies have indicated that ERMES colocalizes with mtDNA nucle-

oid spots and contributes to mtDNA maintenance [82, 83, 86-88]. 

Moreover, the colocalization of Mdm10 and Mdm12 with mtDNA 

nucleoids occurs independently of actin filaments [87]. The spher-

ical mitochondrial network morphology phenotype in ERMES-

defective cells is unrelated to Myo2-mediated, actin-associated 

anterograde mitochondrial transport [89].  

Studies have demonstrated that the yeast Miro GTPase Gem1 

influences mitochondrial morphology, inheritance, and mtDNA 

nucleoids in ways that parallel the effects of ERMES [86, 90]. 

Gem1 has been demonstrated to regulate the size and number of 

ERMES elements without affecting their assembly [91, 92] (Figure 

1F). A small GTPase gene, ARF1, genetically interacts with GEM1 

and DNM1 to sustain mitochondria dynamics and function. Arf1/2 

mutation caused abnormal Fzo1 clusters on mitochondria, in-

creasing the ratio of cells with punctate mitochondria (Figure 2H). 

Similar mitochondrial network morphology defects are identified 

in cells with mutation of Gea1/2, the guanine nucleotide exchange 

factors of Arf1/2 [91] (Figure 2H). Another small ER membrane 

GTPase, Sar1, has been implicated in regulating the size of ER-

mitochondria contact sites through modulating membrane curva-

ture and lipid exchange. The loss of Sar1 GTPase function leads to 

an abnormal morphology of aggregated mitochondria instead of 

the tubular form observed in wildtype yeast cells [93] (Figure 2F). 

In summary, ERMES plays a key role in stabilizing the membrane 

contacts of the ER and mitochondria, supporting inter-organellar 

material exchange, and regulating mitochondria dynamics. 

 

THE CYTOSKELETON SYSTEM ENGAGES IN THE REGULATION 

OF MITOCHONDRIA DYNAMICS 

Since mitochondria cannot undergo de novo synthesis, their prop-

er transport and segregation during asymmetric cell division are 

critical for inheritance [94]. Mdm20 was initially discovered as a 

regulator of actin turnover, and the ∆mdm20 strain possesses 

fewer actin cables and defective mitochondrial inheritance [95]. 

The Arp2/3 complex was found to be required for mitochondrial 

transport on actin cables [96]. Accumulating evidence has indicat-

ed that the Myo2-Mmr1-Ypt11 complex connects mitochondria as 

cargo and is transported along with actin cables to pass through 

the bud neck [97-99] (Figure 1B). Liza Pon’s group proposed a 

mitochondrial quality control mechanism during inheritance, 

termed retrograde actin cable flow (RACF), in which depolarized 

mitochondria were transported in the retrograde direction along 

the actin cables to ensure healthy mitochondria in daughter cells 

[100]. However, aggregated mitochondria are retained in mother 

cells with ERMES defects while the actin structure is not altered 

[101]. These findings indicate the role of the actin cytoskeleton in 

selectively trafficking mitochondria during inheritance, thus main-

taining the functional organelles in daughter cells. 

The role of the actin cytoskeleton in mitochondrial transport 

has been intensively studied, yet its involvement in mitochondria 

dynamics has scarcely been discussed. The inhibition of actin 

polymerization by latrunculin A in yeast causes mitochondrial 

morphological alterations in a dose-dependent manner. When a 

vegetative cell is treated with a low dosage of approximately  

0.5 μM latrunculin A, the mitochondria transition from a tubular 

to hyperfused morphology, whereas a higher dosage of latruncu-

lin A induces mitochondrial fragmentation, which is dependent on 

Dnm1 and Fis1 [25, 102, 103]. We previously performed a yeast 

two-hybrid screening with Drp1 (a human homolog of Dnm1) as 

bait. One of the proteins that interacts with Drp1 is adenylyl 

cyclase-associated protein 2 (CAP2). The yeast homolog of CAP2 is 

Srv2 (Suppressor of RasVal19), also an actin-binding protein that 

regulates actin turnover [102, 104]. Our results demonstrated that 

Srv2 interacts with Dnm1 on mitochondria (Figure 1B). Deletion of 

SRV2 causes hyperfused mitochondria (Figure 2I). This work char-

acterized Srv2 as a pro-fission factor that modulates mitochondri-

al morphology and actin cables individually [102]. So far, actin 

imaging in yeast has focused chiefly on actin cables since visualiz-

ing actin filaments remains challenging owing to the limitations of 

fluorescence microscopy. While higher-resolution techniques such 

as cryo-electron microscopy provide enhanced structural insights, 

it is unsuitable for real-time live imaging to study actin dynamics 

during mitochondrial fission. Studies in mammalian models have 

demonstrated that mitochondrial fission at the “midzone” area, 

rather than at tips, is coordinated together by both ER and actin 

[105]. However, no evidence in yeast shows that both ER and 

actin participate in mitochondrial fission or are localized at fission 

sites. The roles of ER-actin interactions with mitochondria and 

actin filaments beyond cables in mitochondria dynamics await 

further investigation. 
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THE PHYSIOLOGICAL ROLE OF MITOCHONDRIA 
DYNAMICS IN YEAST CELLS 

Mitochondria are central hubs of signal transduction and meta-

bolic pathways. The balance of mitochondria dynamics is affected 

by both cellular factors and environmental stress. Studies have 

indicated that distinct mitochondrial network morphologies are 

associated with specific physiological scenarios. This unique corre-

lation indicates the role of mitochondria dynamics in each status 

change in cells. 

Due to catabolic repression in yeast, energy is produced 

through glycolysis in a glucose-rich environment [106]. During this 

phase, the balance of mitochondria dynamics drives a tubular 

network. When yeast cells are cultured in non-fermentable car-

bon sources like ethanol or glycerol, mitochondria form elongat-

ed/hyperfused and highly branched networks [107]. The elonga-

tion phenotype enhances the formation of supercomplexes in the 

electron transport chain system and then increases the oxidative 

phosphorylation efficiency [3]. Therefore, hyperfused mitochon-

dria are often viewed as having an energetic phenotype upon 

changing the carbon source. However, shifting the dynamic bal-

ance toward fusion is not always the response to actively increas-

ing oxidative phosphorylation to meet harsh conditions for surviv-

al. We recently reported that mitochondria undergo active fission 

under glucose depletion conditions after 48 hours of culture in the 

stationary phase. The ratio of cells with fragmented mitochondria 

is significantly reduced in the stationary DNM1 deletion strain 

[108]. An increased number of fragmented mitochondria may 

favor the selective degradation of disintegrated mitochondria to 

maintain overall mitochondrial quality. This irregular balance of 

mitochondria dynamics in long-term culture is like the changes in 

mitochondria dynamics in an acidic environment during tumor-

igenesis. Our findings demonstrated that maintaining mitochon-

dria dynamics per se is critical for cells to encounter environmen-

tal challenges. 

Since mitochondrial integrity is proposed to be a significant 

aging factor, mitochondria dynamics are being studied intensively 

in senescent yeast models. Damien Laporte et al. used mitochon-

drial morphology to distinguish the rejuvenation ability of chrono-

logical senescent yeast. After seven days of inoculation, the mito-

chondria transitioned into approximately 85% vesicular and 5% 

globular morphologies. They demonstrated the effects of nutrient 

refeeding, and only cells harboring vesicular mitochondria could 

re-enter proliferation. This finding indicates that the vesicular 

mitochondria type is a potential marker of quiescence and that 

globular mitochondria represent senescence [109]. Vesicular mi-

tochondria are often found in chronological senescent cells with 

the deletion of major factors involved in mitochondrial fission, 

Dnm1, Fis1, Mdv1, and Caf4. The phenotype implies that a minor 

mitochondrial fission mechanism needs to be characterized [109]. 

In replicative senescent yeast cells, mitochondria tend to develop 

a fragmented morphology and produce additional reactive oxygen 

species [45, 110]. We previously demonstrated that mitochondrial 

fragmentation is associated with increased Dnm1 protein levels. 

Resveratrol can reduce the ratio of senescent cells with fragment-

ed mitochondria and eliminate ROS [110]. These findings are con-

sistent with the work of ., who et alChristian Q. Scheckhuber 

like -caused net FIS1or  DNM1that knockout of either  reported

ndria in replicative senescence. Suppressing mitocho

results in mitochondrial fragmentation in senescent yeast 

oxidative stress and an increased replicative lifespan  decreased

 mitochondria dynamicsreports demonstrated that  These. [111]

 a role in the physiological status of senescent cells. play  

There is increasing evidence correlating mitochondria dynam-

ics and physiological adjustments in yeast cells. We recently 

demonstrated that fission-defective cells presented a lower desic-

cated survival rate [108]. Qun Ren et al. used electron microscopy 

to reveal the mitochondrial structure and number of yeast cells 

from different growth phases after desiccation. Their results re-

vealed that stationary cells maintain greater numbers of individual 

mitochondria than those in the log phase [112]. These findings 

suggest that mitochondrial fragmentation is a protective process 

for desiccation tolerance. One study used alpha factor to induce 

G1 phase arrest in yeast cells and reported a fragmented mito-

chondrial network. This study revealed proteasomal degradation 

of the mitochondrial fusion factor Fzo1 in alpha-factor-arrested 

cells. The authors suggested that fragmented mitochondria were 

prepared for efficient fusion during zygote mating [113]. 

The studies mentioned above are depicted in Figure 3. These 

examples emphasize the close correlation between mitochondria 

dynamics and physiological conditions. 

 

CONCLUSION AND PERSPECTIVE 

Mitochondria dynamics are fascinating phenomena in cells. These 

processes also involve organellar communication and the sophis-

ticated regulation of mitochondria, and previous studies have 

shed light on the regulatory mechanisms involved. However, the 

signaling pathways that translate environmental stimuli into a 

dynamic mitochondrial response and the corresponding adjust-

ments in mitochondrial activity remain obscure. Clarifying these 

unanswered questions will benefit our pursuit of therapies for 

mitochondria-related disorders, such as neurodegenerative dis-

eases and cancer. Although the yeast cell is the primary eukaryot-

ic model, it contributes valuable findings that can be used to un-

derstand mitochondria dynamics. Unsurprisingly, the yeast model 

will continue to play a significant role in characterizing the role of 

mitochondria dynamics in cells. 
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FIGURE 3 ⬤ Physiological roles of mitochondria dynamics in yeast cells. The balance of mitochondria dynamics changes with physiological conditions in yeast 
cells. This figure depicts a mitochondrial network found under severe physiological conditions. Vegetative growing yeast cells present tubular mitochondria in 
the log phase. When cultured in a non-fermentable carbon source, mitochondrial morphology becomes hyperfused to support respiratory adaptation. Upon 
glucose exhaustion and entry into the stationary phase, mitochondria turn into fragments, which is the state associated with increased tolerance under desic-
cated conditions. The same fragmented phenotype is observed in replicative senescent cells, which can be restored by resveratrol treatment. During chronologi-
cal aging, mitochondrial morphology changes into either a vesicular (fragment-like) or globular (large, bubble-like) form, representing quiescent cells (capable of 
re-entering the cell cycle) or senescent cells (irreversibly arrested), respectively. In addition, fragmented mitochondria are found during zygote fusion, facilitat-
ing the proper segregation of mitochondria. The regulatory pathways responsible for individual morphology under specific physiological conditions require 
intensive study to characterize. 
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