

The molecular mechanisms and physiological roles of mitochondria dynamics in *Saccharomyces cerevisiae*

Chang-Lin Chen^{1,a}, Wei-Ling Huang¹, Alexander Rapoport², Rimantas Daugelavičius³ and Chuang-Rung Chang^{1,*}

¹ Institute of Biotechnology, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu City, 300044, Taiwan. ² Institute of Microbiology and Biotechnology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia. ³ Research Institute of Natural and Technological Sciences, Vytautas Magnus University, K. Donelaičio str. 58, 44248, Kaunas, Lithuania. ^a Current address: Facility Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu City, 300092, Taiwan.

* Corresponding Author:

Chuang-Rung Chang, Tel.: +886-3-5742776, Fax: +886-3-5715934 (CRC); E-mail: crchang@life.nthu.edu.tw

ABSTRACT Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress. The budding yeast *Saccharomyces cerevisiae* has become an important model organism for studying mitochondria dynamics due to its genetic tractability and the conservation of key mitochondrial regulators. Previous research on mitochondria dynamics in yeast has provided valuable insights into the regulatory pathways in eukaryotic cells. It has helped to elucidate the mechanisms related to diseases associated with disrupted mitochondria dynamics. This review explores the molecular mechanisms underlying mitochondria dynamics and their physiological roles in *Saccharomyces cerevisiae*. The knowledge we learned from the primary eukaryotic yeast cell will aid us in advancing future research on the regulatory mechanisms of mitochondria in both health and disease.

doi: 10.15698/mic2025.08.859

Received originally: 04.05.2025;

in revised form: 10.07.2025,

Accepted 30.07.2025,

Published 27.08.2025.

Keywords: mitochondria, yeast, dynamic organelles.

Abbreviations:

CJ – cristae junction,

ER – endoplasmic reticulum,

ERMES – ER-mitochondria encounter structure,

MDC – mitochondria-derived compartment,

MDV – mitochondria-derived vesicle,

MICOS – mitochondrial contact site and

cristae organizing system,

mtDNA – mitochondrial DNA.

INTRODUCTION

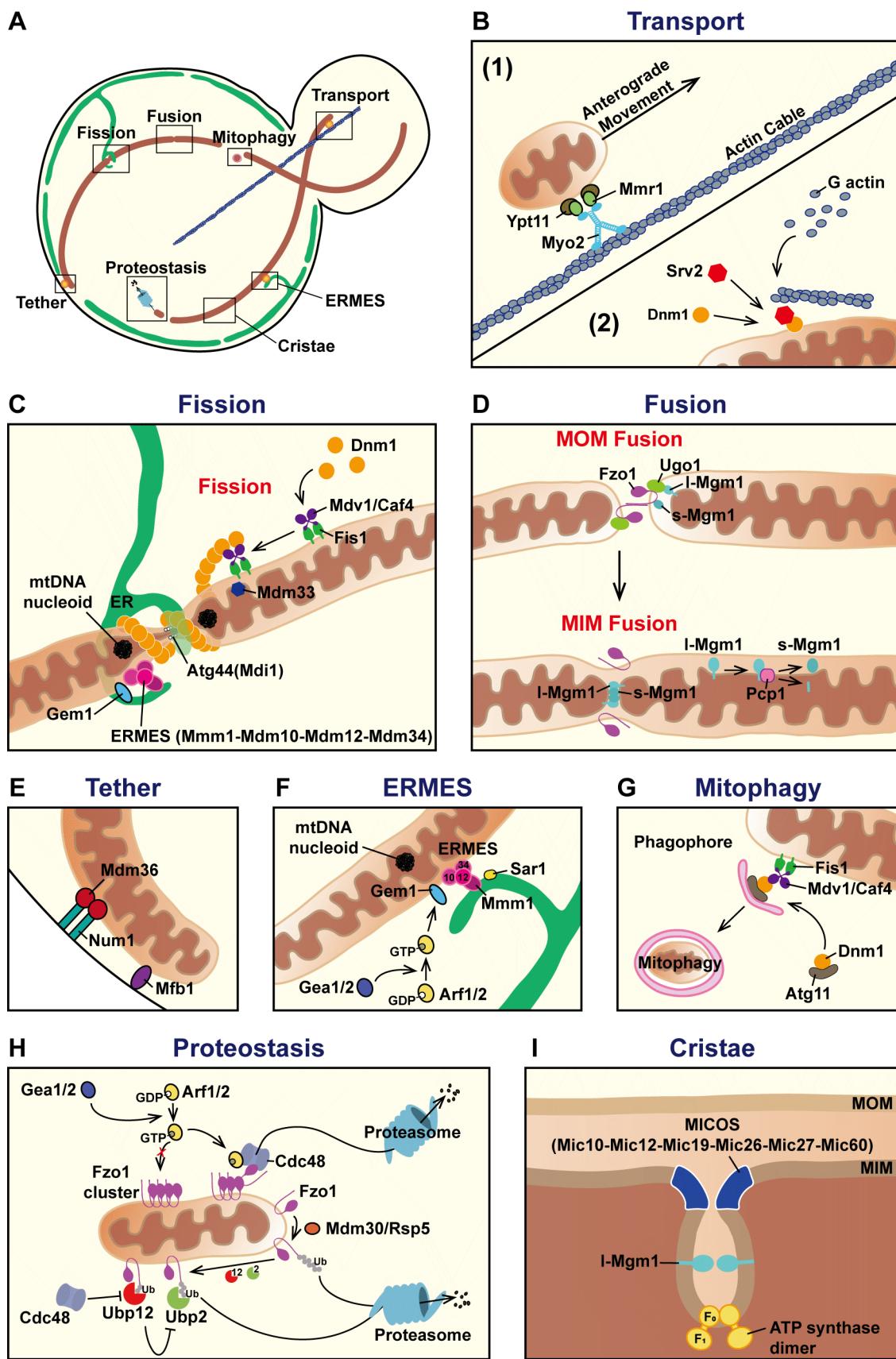
Endosymbiotic mitochondria maintain double-membrane features and circular genomes in eukaryotes [1]. Mitochondria are involved in almost all essential metabolic activities, including fatty acid oxidation, iron-sulfur cluster biogenesis, energy transformation, calcium homeostasis, and apoptosis in eukaryotic cells [2]. These semiautonomous organelles have their own transcription and translation systems [3]. The mitochondrial genome (mtDNA) encodes genes required for the assembly of oxidative phosphorylation complexes. Mitochondrial translation coordinates with the cytosolic translation system to synthesize oxidative phosphorylation complexes to meet cellular energy demands [3]. Recently, new roles of mitochondria have been vigorously explored in different model organisms. For example, mitochondria serve as proteasomes that accumulate unfolded proteins for protein degradation [4]. Additionally, mammalian mtDNA nucleoids can be extruded into the cytoplasm and activate immune responses [5, 6].

These reports indicate that mitochondria serve not only as cellular powerhouses but also as hubs for pivotal metabolism.

Microscopy with mitochondria-targeting dyes and fluorescent proteins has demonstrated the dynamic alterations of the organelar network in real-time in yeast and mammalian cells. These morphological changes can be attributed to two major processes: fission and fusion [7]. Proper regulation of the dynamic mitochondrial network is crucial for maintaining organelar quantity and quality. The fission process facilitates mitochondrial trafficking and inheritance. Additionally, damaged and depolarized mitochondria can be sequestered for degradation after fission. Conversely, the fusion process promotes the exchange of components to reduce detrimental accumulation in individual mitochondria [8]. Mitochondria dynamics regulate mitochondrial quality and organelar communication [9]. Abnormal mitochondrial morphologies were found in degenerative neurons, premature aging, and tumor cells [10]. The ability to shift the balance of mitochondria dynam-

ics has become a critical index for evaluating the health of mitochondria. Genetic manipulation to restore the balance of disrupted mitochondria dynamics was demonstrated to rescue disease-associated phenotypes [11]. Hence, the regulatory factors of mitochondria dynamics have been scrutinized recently. Mitochondrial dynamic factors are classified as either fusion or fission factors. Additional proteins were discovered to facilitate the shaping of the mitochondrial network. These factors have been shown to regulate mitochondrial fission and fusion through either specific protein-protein interactions or unique enzymatic machinery. However, evidence has indicated that unidentified factors, which may participate in redundant pathways or become active under particular conditions, remain to be characterized.

The budding yeast *Saccharomyces cerevisiae* is a powerful model for easy genetic manipulation, and its genome is highly conserved compared to that of higher eukaryotes such as mammals. Additionally, budding yeast has a short cell cycle to proliferate, making them helpful in establishing replicative or chronological senescence research [12]. Scientists have utilized the budding yeast as a model organism to elucidate the underlying molecular mechanisms of mitochondria dynamics (Figure 1). One unique advantage of this primary eukaryotic model is that yeast can survive under respiratory growth defects, i.e., the *rho⁰* strain. This phenomenon is a powerful feature of the acquisition of mitochondrial dysfunction-related phenotypes. Furthermore, yeast has been utilized to model numerous human mitochondrial diseases, including Parkinson's disease [13, 14], Barth syndrome [15, 16], Leigh syndrome [17, 18], and Friedreich's Ataxia [19, 20]. These models enable functional validation of disease-associated gene mutations and facilitate preliminary drug or compound screening for therapeutic development. The unique shape of budding yeast cells makes them an effective platform for examining mitochondrial network morphology and distribution [21]. These features provide advantages for characterizing the regulatory mechanisms of mitochondria dynamics in yeast. To date, abundant evidence has shown that mitochondrial network morphology is present in distinct types caused by deletions of specific genes. To better understand mitochondria dynamics in yeast cells, we reviewed the literature on the dynamic mechanisms and physiological roles of mitochondria in budding yeast.


LARGE GTPases CONSTITUTE THE PROMINENT PROTEIN FAMILY THAT MEDIATES MITOCHONDRIA DYNAMICS

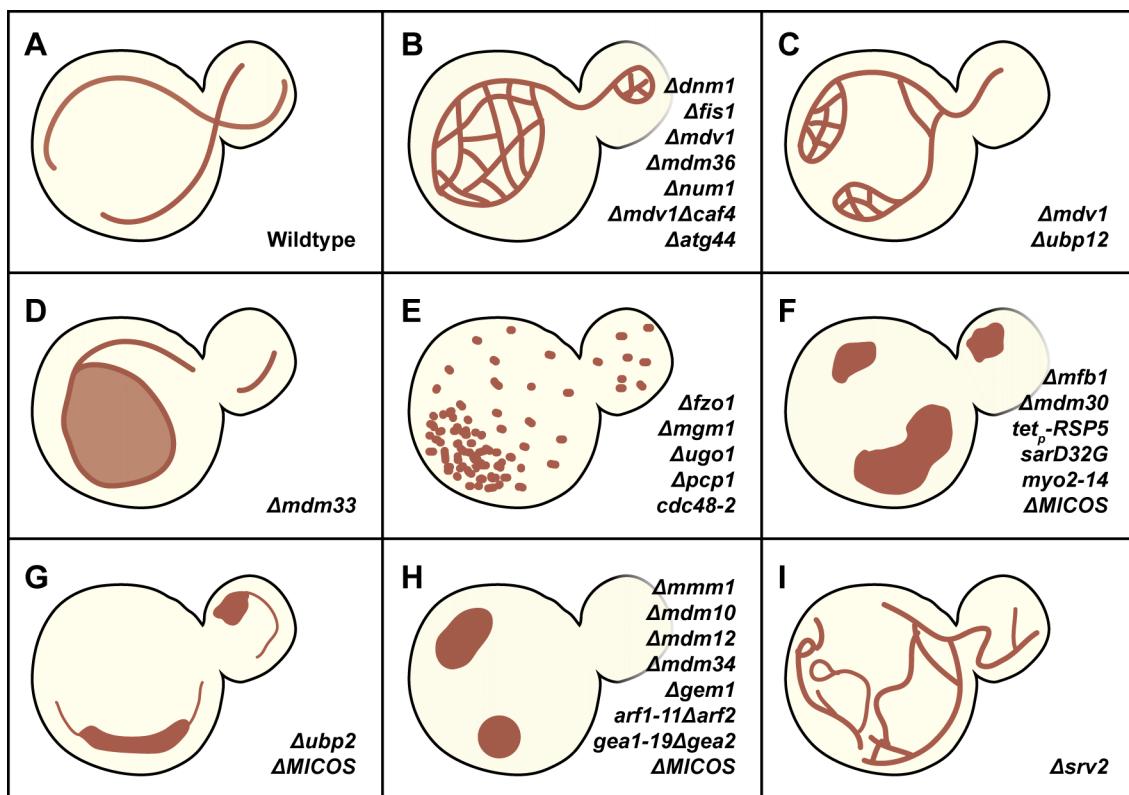
Mitochondrial networks continuously reorganize in eukaryotic cells [22]. Mitochondria dynamics are executed mainly by fission and fusion processes [2]. In vegetative growing yeast cells, mitochondria are present in long tubules at the cell cortex, that have few branches (Figure 2A). We can monitor frequent mitochondrial fission and fusion events via real-time microscopy by expressing mitochondrial-targeting fluorescent proteins. These dynamic processes are conducted by a group of large dynamin-related GTPase proteins, such as Dnm1 and Fzo1 in yeast (Drap1 and Mfn1/2 in mammalian cells), which are often referred to as mitochondria dynamics factors [23-25]. Accordingly, mitochondrial fission and fusion are accompanied by GTP hydrolysis, which is thought to

alter the protein conformation of dynamic factors to facilitate fusion and fission [26]. This phenomenon can be regulated by post-translational modifications in mammalian cells [27-29]. The human orthologs of dynamic factors are listed in Table 1.

In yeast mitochondrial fission, the Dnm1-Fis1 axis is the primary regulatory pathway [30]. Dnm1 is an 85-kDa cytosolic GTPase that participates in mitochondrial fission [23, 25]. It is recruited to constriction sites and assembles into a spiral/ring structure to excise the mitochondrion into two halves [31]. Interestingly, only a subset of mitochondria-associated Dnm1 clusters undergo GTP hydrolysis to drive active fission [32]. Dnm1 defects cause a hyperfused, mesh-net mitochondrial morphology with short tubules extending from the net (Figure 2B, C) [25]. Fis1 is a mitochondrial outer membrane protein that serves as a receptor for Dnm1, regulating Dnm1 recruitment via physical interactions [33]. Two adaptors, Mdv1 and Caf4, also participate in the fission process by interacting with Dnm1 and recruiting Dnm1 to the mitochondrial outer membrane alongside Fis1 [32, 34]. Notably, Mdv1, but not Caf4, is required to activate membrane scission with Dnm1 [33]. Mesh-net mitochondria have also been found in Δ fis1 and Δ mdv1 Δ caf4 cells [34]. Recently, a small mitochondrial intermembrane space protein, Atg44/Mdi1, has been characterized as a fission factor. Although lacking a GTPase domain, Atg44 coordinates with Dnm1 to facilitate mitochondrial fission [35, 36]. Notably, Atg44 mediates mitophagy, a selective degradation of mitochondria by autophagy machinery, by executing mitochondrial fission independently of Dnm1. Moreover, *in vitro* analysis suggests that Atg44 accumulates near the lipid membranes, potentially promoting membrane bending and contributing to complete mitochondrial fission [37]. Mitochondrial fission is primarily conducted through a stepwise mechanism, including coordinated interactions of Dnm1, Fis1, Mdv1, and Caf4, with additional modulation by Atg44 (Figure 1C). Beyond these core components, genetic screenings identified additional proteins aimed at manifesting mitochondrial fission pathways. One example is Mdm33, which regulates mitochondrial membrane lipid homeostasis to influence morphological changes. An increase in Dnm1-dependent fragmented mitochondria has been reported in *MDM33*-overexpressing cells [38]. The Δ mdm33 strain possesses lariat mitochondria (Figure 2D). Although this morphology is unlike the mesh-net morphology found in Δ dnm1, an elongated, irregular mitochondrial network makes Mdm33 a potential regulator of mitochondrial fission [39]. Another example is Mdm36, an antagonist of mitochondrial fusion machinery. Loss of Mdm36 reduces the number of Dnm1 foci on mitochondria and decreases the ratio of mitochondria associated with the cell cortex [40]. These phenotypes indicate that Mdm36 may also be a supportive adaptor for mitochondrial fission.

Mitochondrial fission contributes to mitochondrial derivatives and organellar activities, including the formation of mitochondria-derived vesicles (MDVs), peroxisomes, and the engulfment of mitophagosomes [41-43]. MDV was first reported by Heidi McBride's group as a mechanism for transporting mitochondrial proteins to peroxisomes as part of a proteostasis pathway in

FIGURE 1 Scheme of the factors regulating mitochondria dynamics in yeast cells. (A) Fission, fusion, and transport processes regulate mitochondria dynamics in yeast. This cartoon provides an overview of the regulators that participate, including plasma membrane tethers, ER-mitochondria encounter structure (ERMES), mitophagy, proteostasis, and cristae organization. Indicated boxes correspond to separate panels (B–I), each illustrating the detailed molecular mechanisms of the indicated dynamic process.


FIGURE 1 (continued) ● Scheme of the factors regulating mitochondria dynamics in yeast cells. **(B)** Transport: (1) The Myo2-Mmr1-Ypt11 complex carries mitochondria by connecting them along with actin cables to facilitate anterograde movement through the bud neck of the yeast cell. (2) Srv2 interacts with Dnm1 on mitochondria to promote fission. **(C)** Fission: Dnm1 is recruited from the cytosol to the mitochondrial surface by its receptor Fis1, with adaptors Mdv1 and Caf4 facilitating its recruitment. At the fission site, Dnm1 assembles into a spiral-ring structure to constrict the outer membrane. Atg44/Mdi1 in the inter-membrane space generates inner membrane curvature to complete the fission process. The ER and ERMES, which localize at fission sites, are meant to promote fission. mtDNA nucleoids are segregated during fission. **(D)** Fusion: Mitochondrial outer membrane (MOM) is initiated by docking via Fzo1, which promotes the closing and further fusion of two mitochondria. Fzo1 at MOM and Mgm1 at mitochondrial inner membrane (MIM) are linked by Ugo1 to coordinate subsequent MIM fusion. Mgm1 isoforms are processed by the mitochondrial protease Pcp1. **(E)** Tether: Num1 and Mfb1 act as independent plasma membrane anchors that link mitochondria to the cell cortex, maintaining proper mitochondrial distribution. **(F)** ERMES: The ER-mitochondria encounter structure is composed of Mmm1, Mdm10, Mdm12, and Mdm34, which localize at contact sites of ER (connected by Mmm1) and mitochondria (connected by Mdm10-Mdm12-Mdm34). ERMES marks the potential fission sites and contributes to mtDNA maintenance. Gem1, regulated by Arf1/2 and Gea1/2, regulates ERMES size and number. Sar1 is an ER protein that promotes membrane curvature and lipid exchange between the ER and mitochondria to maintain mitochondrial morphology. **(G)** Mitophagy: Damaged mitochondria are selectively removed by the mitochondrial fission process. Dnm1 interacts with Atg11, a scaffold protein at the phagophore assembly site, to support mitochondrial clearance. **(H)** Proteostasis: Fzo1 turnover is controlled through proteolytic and ubiquitin-dependent pathways. During log phase, the deubiquitinases Ubp12 and Ubp2 modulate the Fzo1 level by controlling Fzo1 ubiquitylation status, and Cdc48 promotes the degradation of Ubp12, thus stabilizing Ubp2 and facilitating fusion. In Arf1/2 mutants, Fzo1 forms clusters that hinder fusion, which are removed by Cdc48 overexpression. Under vacuolar stress, Fzo1 is targeted for ubiquitination by the E3 ubiquitin ligases SCF^{Mdm30} and Rsp5, causing fusion inhibition. **(I)** Cristae: The ultrastructure of MIM is shaped by three regulators, the mitochondrial contact site and cristae organizing system (MICOS), Mgm1, and F₁F₀-ATP synthase dimers. MICOS localizes at the cristae junction between inner boundary membrane and cristae membrane. Mgm1 mostly localizes at flat lamellar region of cristae. F₁F₀-ATP synthase dimers assemble in rows to generate curvature at cristae tips.

mammals [44]. In senescent yeast, a functionally equivalent protein transport pathway involves the production of mitochondrial-derived compartments (MDCs) for selectively sorting mitochondrial proteins [45]. MDC generation requires Dnm1/Fis1 machinery or other specific factors to facilitate fission [46]. Under rapamycin treatment, MDC formation is supported by Dnm1 and the endoplasmic reticulum–mitochondria encounter structure (ERMES) [45, 47]. Additionally, Dnm1 plays a role in mitophagy by interacting with the Atg11 scaffold protein to promote mitochondrial fission and further clearance of damaged mitochondria [48] (Figure 1G).

Concerning yeast mitochondrial fusion, the Fzo1-Mgm1-Ugo1 pathway has been well characterized. Fzo1 is a 97 kDa mitochondrial outer membrane protein. It is also known as yeast mitofusin, with a GTPase domain facing the cytoplasm [24, 49]. Fzo1 facilitates the docking of two proximal mitochondria and the subsequent fusion of their outer membranes (Figure 1D). However, *in vitro* assays have revealed that Fzo1 overexpression leads to the opposite effect, as fragmented mitochondria accumulate. This result is potentially explained by Fzo1 overoccupying the membrane, which may disrupt the interactions of lipid molecules necessary for mitochondrial fusion [50]. The turnover of Fzo1 is regulated by the proteolytic mechanism rather than transcriptional control (Figure 1H). Overexpression of Cdc48, an AAA ATPase with protein-unfolding activity, promotes the removal of Fzo1 clusters. In the exponential growth phase (log phase), the Fzo1 level is controlled by two deubiquitinases, Ubp12 and Ubp2, both of which are regulated by Cdc48 [51]. Under senescence or vacuolar inhibition conditions, Fzo1 is regulated by E3 ubiquitin ligases SCF^{Mdm30} (Skp1-Cullin-F-box complex with Mdm30 as the F-box protein) and Rsp5 through a proteolytic cascade [52]. Mgm1 is a 99 kDa GTPase localized at the mitochondrial inner membrane, particularly regulating inner membrane fusion [53] (Figure 1D). *In vitro* evidence has shown that Mgm1 promotes fusion by tethering mitochondrial membranes [54]. *In vivo*, Mgm1 defects cause the aggregation and fragmentation of mitochondria [53]. Mgm1 has two isoforms, I-Mgm1 and s-Mgm1, which are processed by the mitochondrial protease Pcp1 [55]. Mgm1 isoforms are crucial

for maintaining the ultrastructure of the mitochondrial inner membrane, with I-Mgm1 enriched in the cristae membrane and s-Mgm1 in the inner boundary membrane [56]. Intriguingly, impairing the proteasome can restore mitochondrial fusion activity without Fzo1 by increasing the ratio of s-Mgm1/I-Mgm1 [57]. Ugo1, a mitochondrial outer membrane protein, regulates the Fzo1-Mgm1 interaction to promote the fusion of the mitochondrial outer and inner membranes [58, 59]. Fzo1, Mgm1, and Ugo1 form the axis of fusion factors that regulate mitochondrial fusion. Losing one of these genes results in fragmented mitochondria (Figure 2E).

Cristae formation, which refers to the ultrastructure of the mitochondrial inner membrane, is tightly regulated by three key factors in budding yeast: the mitochondrial contact site and cristae organizing system (MICOS) complex, fusion machinery, and the dimerization of F₁F₀-ATP synthases [60] (Figure 1I). Typically, cristae present a lamellar morphology through invagination of inner membrane. However, defects in the aforementioned factors can lead to abnormal cristae structures, such as onion-like or swollen architectures, as validated by electron microscopy [61]. The MICOS complex consists of six subunits: Mic10, Mic12, Mic19, Mic26, Mic27, and Mic60, and is localized at the cristae junction (CJ) between the inner boundary membrane and the crista membrane [62, 63]. The stabilization of CJs has been shown to preserve the inner membrane ultrastructure and respiration capability [63, 64]. Fusion factor Mgm1 is also involved in the formation of lamellar cristae. Immuno-electron microscopy results have revealed that the s-Mgm1 is predominantly localized at the inter-membrane space, suggesting that s-Mgm1 facilitates cristae formation immediately following outer membrane fusion events [56, 60]. The bending region of the cristae membrane requires the dimerization of F₁F₀-ATP synthases. Loss of dimerization-associated subunits Atp20/Atp21 disrupts cristae morphology [65, 66]. Studies have demonstrated that dimerization of F₁F₀-ATP synthase is formed in rows to maintain the curvature of the inner mitochondrial membrane in yeast [67, 68]. A recent study has revealed Mmc1/Mug99, an inner mitochondrial membrane protein, in *Schizosaccharomyces pombe* (fission yeast) as a novel

FIGURE 2 Illustration of mitochondrial morphology phenotypes in yeast cells. Representative mitochondrial morphology phenotypes are demonstrated in each panel, which are identified in the indicated genetic ablation or mutation strains. (A) In vegetative wild-type yeast, mitochondria present a long tubular network along the cell cortex. (B-C) Fission defects give rise to a mesh net (B) or collapsed net (C) morphology. (D) Disintegrated lipid homeostasis of mitochondria induces a lariat-like network. (E) Fusion defects result in fragmented mitochondria. (F-H) Loss of function in inter-organellar contacts with mitochondria causes abnormal distribution of big puncta mitochondria (F-G) or globular (H) mitochondrial morphology. (I) Loss of actin organization caused hyperfusion of mitochondria.

factor that facilitates cristae maintenance by interacting with Mic60 and Mic26. However, there is no identified homolog of Mmc1 in budding yeast or humans. It is noteworthy that the expression of *SpMmc1* in *S. cerevisiae* lacking MICOS components was able to restore respiratory growth defects. However, it was unable to rescue the altered mitochondrial morphology resulting from disrupted cristae structure. [69]. These findings demonstrate the coordinated regulation of MICOS, Mgm1, and F_1F_0 -ATP synthase in maintaining cristae formation, which is critical for respiratory function and mtDNA integrity.

In addition to conventional dynamic factors that directly bind to the mitochondrial membrane, researchers have endeavored to identify novel factors involved in regulating mitochondria dynamics. Accumulating evidence has indicated alternative mechanisms that govern mitochondrial network morphology and distribution. In yeast, Clu1, a functional homolog of the *cluA* gene in *Dictyostelium discoideum*, has been shown to mediate mitochondrial morphology similarly to Dnm1. Knocking out of *CLU1* results in aggregated or hyperfused mitochondria without impairing cell growth and respiratory function [70]. Another evidence pertains to AAC2, an adenine nucleotide translocator localized at the mitochondrial inner membrane. The repression of AAC2 causes mitochondrial fragmentation, even though AAC2 has been confirmed to be dis-

pensable for mitochondrial fusion [71]. The underlying mechanism by which Clu1 or AAC2 operates remains to be explored. Several linker proteins have been proposed at the cell cortex to stabilize contacts between mitochondria and the cortical membrane. Num1 and Mfb1 independently mediate mitochondrial anchoring in the mother cell (Figure 1E), while Mmr1 interacts with Myo2 to transport mitochondria into the daughter cell [72-74] (Figure 1B). Genetic disruption of these anchors causes abnormal mitochondrial distribution and partial collapse of the mitochondrial network (Figure 2F). Sym1, identified as the yeast homolog of the human MPV17, which is mutated in a mitochondrial DNA depletion syndrome, also contributes to inner membrane integrity. The deletion of *SYM1* caused annihilated cristae structure, defective succinate dehydrogenase, and reduced respiratory activity [75].

An inability to change the balance of mitochondria dynamics would aid pathogenesis in mammalian cells. Thus, characterizing the dynamics factor in yeast cells is critical for all cells. Large GTPases work alongside other factors through protein-protein interactions and GTP hydrolysis to maintain constant mitochondrial fission and fusion. Dynamic processes are important for maintaining the quantity and quality of mitochondria. Table 1 lists the abovementioned factors.

TABLE 1 ● Mitochondria dynamics players in *Saccharomyces cerevisiae*.

Yeast Gene	Human Ortholog	Role and Function	Reference
Major factors involved in mitochondrial fission			
<i>DNM1</i>	DRP1	Cytosolic GTPase regulates mitochondrial outer membrane fission.	[23, 25]
<i>FIS1</i>	FIS1	Mitochondrial outer membrane GTPase regulates recruitment of Dnm1.	[33]
<i>MDV1</i>	-	GTPase on the surface of mitochondrial outer membrane interacts with Dnm1 and Fis1 to facilitate mitochondrial fission.	[32]
<i>CAF4</i>	-	GTPase on the surface of mitochondrial outer membrane stabilizes Dnm1-Fis1 interaction to facilitate mitochondrial fission.	[34]
<i>ATG44/MDI1</i>	-	Mitochondrial intermembrane space protein generates membrane fragility to complete membrane scission	[35, 36]
Major factors involved in mitochondrial fusion			
<i>FZO1</i>	MFN1/2	Mitochondrial outer membrane GTPase regulates mitochondrial outer membrane fusion.	[24, 49]
<i>MGM1</i>	OPA1	Mitochondrial inner membrane GTPase regulates mitochondrial inner membrane fusion and maintains lamellar cristae structure.	[53, 54]
<i>UGO1</i>	SLC25A46 (functional [114])	Mitochondrial outer membrane GTPase interacts with Fzo1 and Mgm1 to promote mitochondrial fusion.	[58, 59]
Accessory mediators for mitochondrial fission and fusion			
<i>MDM33</i>	CCDC51 (structural [115])	Mitochondrial inner membrane protein regulates mitochondrial inner membrane fission and lipid homeostasis.	[38, 39]
<i>MDM36</i>	-	Mitochondrial outer membrane protein regulates Dnm1-Num1 interaction with mitochondria on cell cortex.	[40]
<i>NUM1</i>	-	Cell cortex protein regulates mitochondria anchor on cell cortex.	[73]
<i>MFB1</i>	-	Mitochondria-associated F-box protein regulates mitochondria anchor on cell cortex.	[72, 73]
<i>MMR1</i>	-	Mitochondria-associated protein supports mitochondria-actin linker for proper transport.	[116]
<i>MYO2</i>	MYO5A/B/C	Mitochondria-associated protein supports mitochondria-actin linker for proper transport.	[89, 116]
<i>MMM1</i>	-	ERMES core protein regulates mitochondrial fission and MDC formation.	[47, 79, 80]
<i>MDM10</i>	-	ERMES core protein regulates mitochondrial fission and MDC formation.	[47, 79, 81]
<i>MDM12</i>	-	ERMES core protein regulates mitochondrial fission and MDC formation.	[47, 79, 82]
<i>MDM34</i>	-	ERMES core protein regulates mitochondrial fission and MDC formation.	[47, 79, 83, 86]
<i>GEM1</i>	RHOT (Miro)	ERMES associated protein regulates MDC formation.	[47]
<i>SAR1</i>	SAR1	Small GTPase on ER regulates the size of ER-mitochondria contacts and membrane curvature of mitochondria and ER.	[93]
<i>SRV2</i>	CAP	Actin-binding protein interacts with Dnm1 to regulate mitochondrial fission.	[102, 104]
Regulatory mediators in mitochondrial fission and fusion			
<i>CDC48</i>	VCP	Cytosolic AAA-ATPase regulates ubiquitinylation of Fzo1.	[51]
<i>MDM30</i>	-	Cytosolic F-box protein regulates ubiquitinylation of Fzo1.	[117, 118]
<i>UBP2, UBP12</i>	USP	Cytosolic deubiquitylase regulates ubiquitinylation of Fzo1.	[51]
<i>PCP1</i>	PARL	Mitochondrial inner membrane protease regulates proteolytic process of Mgm1.	[55]
<i>ARF1, ARF2</i>	ARF	Small GTPase on Golgi negatively regulates Fzo1 turnover.	[91]
<i>GEA1, GEA2</i>	GBF1	Guanine nucleotide-exchange factor of Arf1/2 negatively regulates Fzo1 turnover.	[91]
Other factors related to mitochondria dynamics			
<i>MIC10, MIC12, MIC19, MIC26, MIC27, MIC60</i>	Mic10, Mic12, Mic19, Mic26, Mic27, Mic60	MICOS subunits in mitochondrial inner membrane regulates mitochondrial inner membrane ultrastructure.	[62-64]
<i>ATP20, ATP21</i>	ATP5L, ATP5I	F ₁ F ₀ -ATP synthase subunit regulates dimerization and maintains membrane curvature of cristae.	[65-67]
<i>AAC2</i>	ANT1	Mitochondrial adenine nucleotide translocator regulates mitochondrial fusion.	[71]
<i>CLU1</i>	CLUH	Cytosolic protein regulates mitochondrial outer membrane fission.	[70]
<i>SYM1</i>	MPV17	Mitochondrial inner membrane protein regulates mitochondrial inner membrane ultrastructure.	[75]

THE ENDOPLASMIC RETICULUM PLAYS A CRITICAL ROLE IN MITOCHONDRIAL FISSION

Interorganellar contacts facilitate the exchange of lipids between mitochondria and other membrane-bound organelles, such as the endoplasmic reticulum (ER) and vacuoles, to create a dynamic circulating system [76]. Many reports have demonstrated that ER-mitochondria contacts modulate mitochondrial division, lipid transfer, and ion homeostasis [77]. In budding yeast, these contacts are regulated by ERMES, which forms a bridge-like structure, as revealed by cryo-correlative light and electron microscopy (cryo-CLEM) [78] (Figure 1F). ERMES consists of four core proteins: Mmm1, Mdm10, Mdm12, and Mdm34 [79]. The genetic disruption of any of these four genes results in abnormal spherical mitochondrial morphology and impaired mitochondrial inheritance [80-83] (Figure 2H). Based on these findings, ERMES is considered to play a critical role in mitochondria dynamics. Jodi Nunni's group was the first to report how ER contributes to mitochondrial fission in yeast and mammalian cells. Their study demonstrated ER tubules wrap around mitochondria and mark the mitochondrial fission site [84] (Figure 1C). The fission factor Dnm1 assembles into clusters at these sites and executes mitochondrial division. ERMES foci were later recognized as ER-associated mitochondrial fission sites. Recent research has revealed that ER tubules and Dnm1 denote fission and fusion sites on mitochondria [85]. Since mtDNA nucleoid segregation has been demonstrated to be associated with mitochondrial division, studies have indicated that ERMES colocalizes with mtDNA nucleoid spots and contributes to mtDNA maintenance [82, 83, 86-88]. Moreover, the colocalization of Mdm10 and Mdm12 with mtDNA nucleoids occurs independently of actin filaments [87]. The spherical mitochondrial network morphology phenotype in ERMES-defective cells is unrelated to Myo2-mediated, actin-associated anterograde mitochondrial transport [89].

Studies have demonstrated that the yeast Miro GTPase Gem1 influences mitochondrial morphology, inheritance, and mtDNA nucleoids in ways that parallel the effects of ERMES [86, 90]. Gem1 has been demonstrated to regulate the size and number of ERMES elements without affecting their assembly [91, 92] (Figure 1F). A small GTPase gene, *ARF1*, genetically interacts with *GEM1* and *DNM1* to sustain mitochondria dynamics and function. *Arf1/2* mutation caused abnormal Fzo1 clusters on mitochondria, increasing the ratio of cells with punctate mitochondria (Figure 2H). Similar mitochondrial network morphology defects are identified in cells with mutation of Gea1/2, the guanine nucleotide exchange factors of *Arf1/2* [91] (Figure 2H). Another small ER membrane GTPase, Sar1, has been implicated in regulating the size of ER-mitochondria contact sites through modulating membrane curvature and lipid exchange. The loss of Sar1 GTPase function leads to an abnormal morphology of aggregated mitochondria instead of the tubular form observed in wildtype yeast cells [93] (Figure 2F). In summary, ERMES plays a key role in stabilizing the membrane contacts of the ER and mitochondria, supporting inter-organellar material exchange, and regulating mitochondria dynamics.

THE CYTOSKELETON SYSTEM ENGAGES IN THE REGULATION OF MITOCHONDRIA DYNAMICS

Since mitochondria cannot undergo *de novo* synthesis, their proper transport and segregation during asymmetric cell division are critical for inheritance [94]. *Mdm20* was initially discovered as a regulator of actin turnover, and the *Δmdm20* strain possesses fewer actin cables and defective mitochondrial inheritance [95]. The Arp2/3 complex was found to be required for mitochondrial transport on actin cables [96]. Accumulating evidence has indicated that the Myo2-Mmr1-Ypt11 complex connects mitochondria as cargo and is transported along with actin cables to pass through the bud neck [97-99] (Figure 1B). Liza Pon's group proposed a mitochondrial quality control mechanism during inheritance, termed retrograde actin cable flow (RACF), in which depolarized mitochondria were transported in the retrograde direction along the actin cables to ensure healthy mitochondria in daughter cells [100]. However, aggregated mitochondria are retained in mother cells with ERMES defects while the actin structure is not altered [101]. These findings indicate the role of the actin cytoskeleton in selectively trafficking mitochondria during inheritance, thus maintaining the functional organelles in daughter cells.

The role of the actin cytoskeleton in mitochondrial transport has been intensively studied, yet its involvement in mitochondria dynamics has scarcely been discussed. The inhibition of actin polymerization by latrunculin A in yeast causes mitochondrial morphological alterations in a dose-dependent manner. When a vegetative cell is treated with a low dosage of approximately 0.5 μ M latrunculin A, the mitochondria transition from a tubular to hyperfused morphology, whereas a higher dosage of latrunculin A induces mitochondrial fragmentation, which is dependent on Dnm1 and Fis1 [25, 102, 103]. We previously performed a yeast two-hybrid screening with Drp1 (a human homolog of Dnm1) as bait. One of the proteins that interacts with Drp1 is adenylyl cyclase-associated protein 2 (CAP2). The yeast homolog of CAP2 is Srv2 (Suppressor of RasVal19), also an actin-binding protein that regulates actin turnover [102, 104]. Our results demonstrated that Srv2 interacts with Dnm1 on mitochondria (Figure 1B). Deletion of *SRV2* causes hyperfused mitochondria (Figure 2I). This work characterized Srv2 as a pro-fission factor that modulates mitochondrial morphology and actin cables individually [102]. So far, actin imaging in yeast has focused chiefly on actin cables since visualizing actin filaments remains challenging owing to the limitations of fluorescence microscopy. While higher-resolution techniques such as cryo-electron microscopy provide enhanced structural insights, it is unsuitable for real-time live imaging to study actin dynamics during mitochondrial fission. Studies in mammalian models have demonstrated that mitochondrial fission at the "midzone" area, rather than at tips, is coordinated together by both ER and actin [105]. However, no evidence in yeast shows that both ER and actin participate in mitochondrial fission or are localized at fission sites. The roles of ER-actin interactions with mitochondria and actin filaments beyond cables in mitochondria dynamics await further investigation.

THE PHYSIOLOGICAL ROLE OF MITOCHONDRIA DYNAMICS IN YEAST CELLS

Mitochondria are central hubs of signal transduction and metabolic pathways. The balance of mitochondria dynamics is affected by both cellular factors and environmental stress. Studies have indicated that distinct mitochondrial network morphologies are associated with specific physiological scenarios. This unique correlation indicates the role of mitochondria dynamics in each status change in cells.

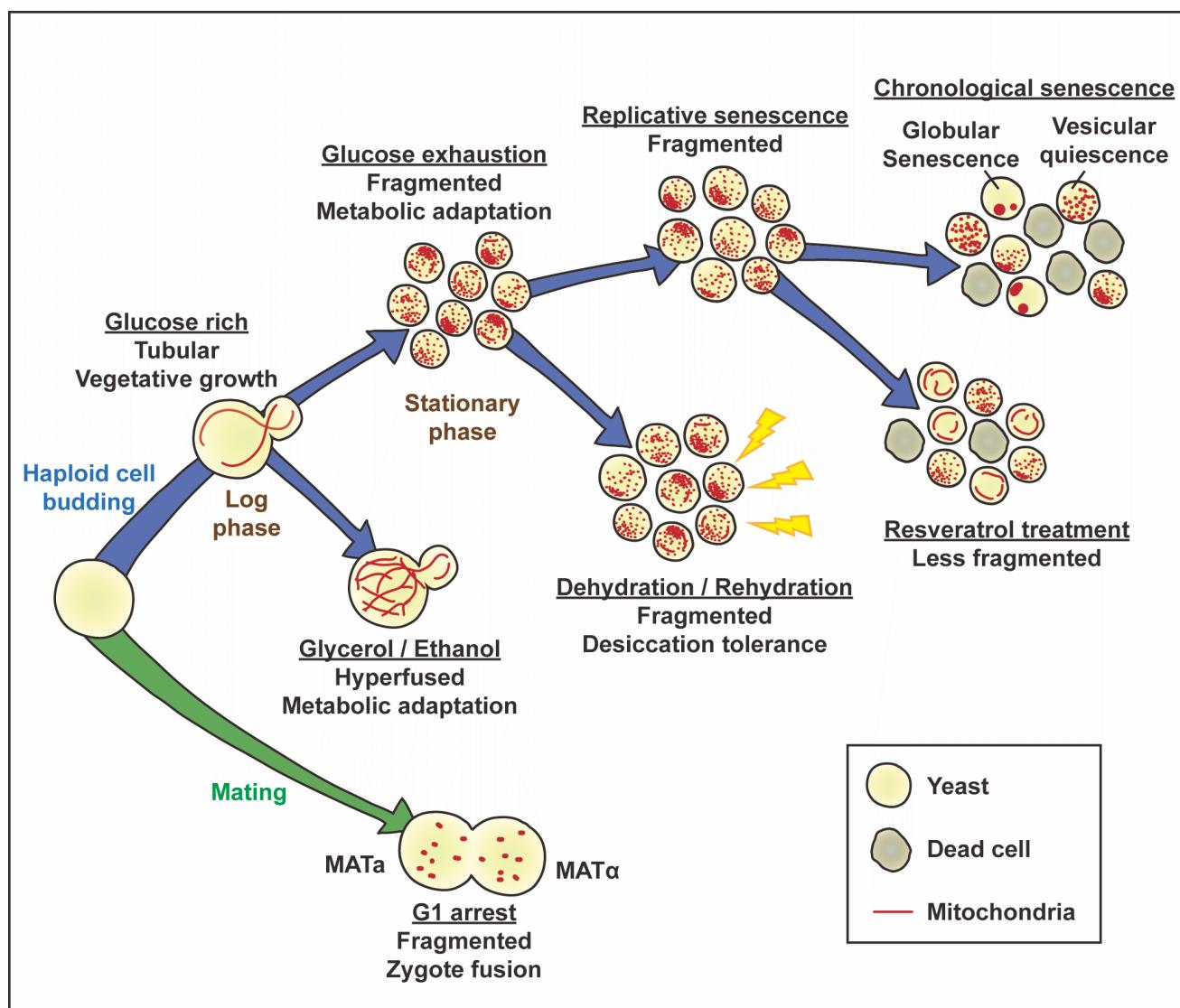
Due to catabolic repression in yeast, energy is produced through glycolysis in a glucose-rich environment [106]. During this phase, the balance of mitochondria dynamics drives a tubular network. When yeast cells are cultured in non-fermentable carbon sources like ethanol or glycerol, mitochondria form elongated/hyperfused and highly branched networks [107]. The elongation phenotype enhances the formation of supercomplexes in the electron transport chain system and then increases the oxidative phosphorylation efficiency [3]. Therefore, hyperfused mitochondria are often viewed as having an energetic phenotype upon changing the carbon source. However, shifting the dynamic balance toward fusion is not always the response to actively increasing oxidative phosphorylation to meet harsh conditions for survival. We recently reported that mitochondria undergo active fission under glucose depletion conditions after 48 hours of culture in the stationary phase. The ratio of cells with fragmented mitochondria is significantly reduced in the stationary *DNM1* deletion strain [108]. An increased number of fragmented mitochondria may favor the selective degradation of disintegrated mitochondria to maintain overall mitochondrial quality. This irregular balance of mitochondria dynamics in long-term culture is like the changes in mitochondria dynamics in an acidic environment during tumorigenesis. Our findings demonstrated that maintaining mitochondria dynamics *per se* is critical for cells to encounter environmental challenges.

Since mitochondrial integrity is proposed to be a significant aging factor, mitochondria dynamics are being studied intensively in senescent yeast models. Damien Laporte *et al.* used mitochondrial morphology to distinguish the rejuvenation ability of chronological senescent yeast. After seven days of inoculation, the mitochondria transitioned into approximately 85% vesicular and 5% globular morphologies. They demonstrated the effects of nutrient refeeding, and only cells harboring vesicular mitochondria could re-enter proliferation. This finding indicates that the vesicular mitochondria type is a potential marker of quiescence and that globular mitochondria represent senescence [109]. Vesicular mitochondria are often found in chronological senescent cells with the deletion of major factors involved in mitochondrial fission, *Dnm1*, *Fis1*, *Mdv1*, and *Caf4*. The phenotype implies that a minor mitochondrial fission mechanism needs to be characterized [109]. In replicative senescent yeast cells, mitochondria tend to develop a fragmented morphology and produce additional reactive oxygen species [45, 110]. We previously demonstrated that mitochondrial fragmentation is associated with increased *Dnm1* protein levels. Resveratrol can reduce the ratio of senescent cells with fragmented mitochondria and eliminate ROS [110]. These findings are con-

sistent with the work of Christian Q. Scheckhuber *et al.*, who reported that knockout of either *DNM1* or *FIS1* caused net-like mitochondria in replicative senescence. Suppressing mitochondrial fragmentation in senescent yeast results in decreased oxidative stress and an increased replicative lifespan [111]. These reports demonstrated that mitochondria dynamics play a role in the physiological status of senescent cells.

There is increasing evidence correlating mitochondria dynamics and physiological adjustments in yeast cells. We recently demonstrated that fission-defective cells presented a lower desiccated survival rate [108]. Qun Ren *et al.* used electron microscopy to reveal the mitochondrial structure and number of yeast cells from different growth phases after desiccation. Their results revealed that stationary cells maintain greater numbers of individual mitochondria than those in the log phase [112]. These findings suggest that mitochondrial fragmentation is a protective process for desiccation tolerance. One study used alpha factor to induce G1 phase arrest in yeast cells and reported a fragmented mitochondrial network. This study revealed proteasomal degradation of the mitochondrial fusion factor *Fzo1* in alpha-factor-arrested cells. The authors suggested that fragmented mitochondria were prepared for efficient fusion during zygote mating [113].

The studies mentioned above are depicted in **Figure 3**. These examples emphasize the close correlation between mitochondria dynamics and physiological conditions.


CONCLUSION AND PERSPECTIVE

Mitochondria dynamics are fascinating phenomena in cells. These processes also involve organellar communication and the sophisticated regulation of mitochondria, and previous studies have shed light on the regulatory mechanisms involved. However, the signaling pathways that translate environmental stimuli into a dynamic mitochondrial response and the corresponding adjustments in mitochondrial activity remain obscure. Clarifying these unanswered questions will benefit our pursuit of therapies for mitochondria-related disorders, such as neurodegenerative diseases and cancer. Although the yeast cell is the primary eukaryotic model, it contributes valuable findings that can be used to understand mitochondria dynamics. Unsurprisingly, the yeast model will continue to play a significant role in characterizing the role of mitochondria dynamics in cells.

ACKNOWLEDGEMENTS

This research was funded by the Latvian Council of Science Nr. (LV-LT-TW/2025/1 for Rapoport, A), Research Council of Lithuania and the Taiwanese Representative Office in Lithuania (S-LLT-25-3 for Daugelavičius, R), as well as the National Science and Technology Council (113-2320-B-007-003 and 114-2923-B-007 -001 -MY3 for Chang, C. R.).

This review is intended to be used as a reference for those not experts in the field; we apologize to the respected scientists who have contributed to yeast mitochondria dynamics but are not indicated herein due to our limited capacity. We thank the staff of the Taiwan Yeast Bioresource Center at the First Core Labs National Taiwan University College of Medicine for sharing biore-

FIGURE 3 • Physiological roles of mitochondria dynamics in yeast cells. The balance of mitochondria dynamics changes with physiological conditions in yeast cells. This figure depicts a mitochondrial network found under severe physiological conditions. Vegetative growing yeast cells present tubular mitochondria in the log phase. When cultured in a non-fermentable carbon source, mitochondrial morphology becomes hyperfused to support respiratory adaptation. Upon glucose exhaustion and entry into the stationary phase, mitochondria turn into fragments, which is the state associated with increased tolerance under desiccated conditions. The same fragmented phenotype is observed in replicative senescent cells, which can be restored by resveratrol treatment. During chronological aging, mitochondrial morphology changes into either a vesicular (fragment-like) or globular (large, bubble-like) form, representing quiescent cells (capable of re-entering the cell cycle) or senescent cells (irreversibly arrested), respectively. In addition, fragmented mitochondria are found during zygote fusion, facilitating the proper segregation of mitochondria. The regulatory pathways responsible for individual morphology under specific physiological conditions require intensive study to characterize.

sources. We would also like to thank Professor Tzu-Hao Cheng (National Yang Ming Chiao Tung University), Professor Horng-Dar Wang (National Tsing Hua University) and Professor Ruth Hua-Wen Fu (National Tsing Hua University) for their support during the preparation of this manuscript.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

COPYRIGHT

© 2025 Chen et al. This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduc-

tion in any medium, provided the original author and source are acknowledged.

Please cite this article as: Chang-Lin Chen, Wei-Ling Huang, Alexander Rapoport, Rimantas Daugelavičius and Chuang-Rung Chang (2025). The molecular mechanisms and physiological roles of mitochondria dynamics in *Saccharomyces cerevisiae*. *Microbial Cell* 12: 242-254. doi: 10.15698/mic2025.08.859

REFERENCES

1. Lane N and Martin W (2010). The energetics of genome complexity. *Nature* 467(7318): 929-934. doi: 10.1038/nature09486
2. Friedman JR and Nunnari J (2014). Mitochondrial form and function. *Nature* 505(7483): 335-343. doi: 10.1038/nature12985
3. Couvillion MT, Soto IC, Shipkovska G, and Churchman LS (2016). Synchronized mitochondrial and cytosolic translation programs. *Nature* 533(7604): 499-503. doi: 10.1038/nature18015
4. Ruan L, Zhou C, Jin E, Kuchtaray A, Zhang Y, Wen Z, Florens L, and Li R (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. *Nature* 543(7645): 443-446. doi: 10.1038/nature21695
5. McArthur K, Whitehead Lachlan W, Heddleston John M, Li L, Padman Benjamin S, Oorschot V, Geoghegan Niall D, Chappaz S, Davidson S, San Chin H, Lane Rachael M, Dramicanin M, Saunders Tahnee L, Sugiana C, Lessene R, Osellame Laura D, Chew T-L, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan Michael T, Rogers Kelly L, van Delft Mark F, and Kile Benjamin T (2018). BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. *Science* 359(6378): eaao6047. doi: 10.1126/science.aa06047
6. White Michael J, McArthur K, Metcalf D, Lane Rachael M, Cambier John C, Herold Marco J, van Delft Mark F, Bedoui S, Lessene G, Ritchie Matthew E, Huang David CS, and Kile Benjamin T (2014). Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. *Cell* 159(7): 1549-1562. doi: 10.1016/j.cell.2014.11.036
7. Westermann B and Neupert W (2000). Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in *Saccharomyces cerevisiae*. *Yeast* 16(15): 1421-1427. doi: 10.1002/1097-0061(20001116:15<1421::AID-YEA624>3.0.CO;2-U
8. Tamura Y, Itoh K, and Sesaki H (2011). SnapShot: Mitochondrial Dynamics. *Cell* 145(7): 1158-1158.e1. doi: 10.1016/j.cell.2011.06.018
9. Klecker T, Böckler S, and Westermann B (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. *Trends Cell Biol* 24(9): 537-545. doi: 10.1016/j.tcb.2014.04.004
10. Chan DC (2020). Mitochondrial Dynamics and Its Involvement in Disease. *Ann Rev Pathol* 15(1): 235-259. doi: 10.1146/annurev-pathmechdis-012419-032711
11. Chen H, Ren S, Clish C, Jain M, Mootha V, McCaffery JM, and Chan DC (2015). Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. *J Cell Biol* 211(4): 795-805. doi: 10.1083/jcb.201507035
12. Denoth Lippuner A, Julou T, and Barral Y (2014). Budding yeast as a model organism to study the effects of age. *FEMS Microbiol Rev* 38(2): 300-325. doi: 10.1111/1574-6976.12060
13. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, LaBaer J, Rochet J-C, Bonini NM, and Lindquist S (2006). α -Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson's Models. *Science* 313(5785): 324-328. doi: 10.1126/science.1129462
14. Menezes R, Tenreiro S, Macedo D, Santos CN, and Outeiro TF (2015). From the baker to the bedside: yeast models of Parkinson's disease. *Microbial Cell* 2(8): 262-279. doi: 10.15698/mic2015.08.219
15. de Taffin de Tilques M, Lasserre JP, Godard F, Sardin E, Bouhier M, Le Guedard M, Kucharczyk R, Petit PX, Testet E, di Rago JP, and Tribouillard-Tanvier D (2018). Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. *Microbial Cell* 5(5): 220-232. doi: 10.15698/mic2018.05.629
16. Antunes D, Chowdhury A, Aich A, Saladi S, Harpaz N, Stahl M, Schuldiner M, Herrmann JM, Rehling P, and Rapaport D (2019). Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1. *J Mol Med* 97(2): 269-279. doi: 10.1007/s00109-018-1728-4
17. Barrientos A, Zambrano A, and Tzagoloff A (2004). Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in *Saccharomyces cerevisiae*. *EMBO J* 23(17): 3472-3482-3482. doi: 10.1038/sj.emboj.7600358
18. Henke M-T, Prigione A, and Schuelke M (2024). Disease models of Leigh syndrome: From yeast to organoids. *J Inher Metab Dis* 47(6): 1292-1321. doi: 10.1002/jimd.12804
19. Radisky DC, Babcock MC, and Kaplan J (1999). The Yeast Frataxin Homologue Mediates Mitochondrial Iron Efflux: EVIDENCE FOR A MITOCHONDRIAL IRON CYCLE*. *J Biol Chem* 274(8): 4497-4499. doi: 10.1074/jbc.274.8.4497
20. Cotticelli MG, Rasmussen L, Kushner NL, McKellip S, Sosa MI, Manouvakova A, Feng S, White EL, Maddry JA, Heemskerk J, Oldt RJ, Surrey LF, Ochs R, and Wilson RB (2011). Primary and Secondary Drug Screening Assays for Friedreich Ataxia. *J Biomol Screen* 17(3): 303-313. doi: 10.1177/1087057111427949
21. Viana MP, Brown AI, Mueller IA, Goul C, Koslover EF, and Rafelski SM (2020). Mitochondrial Fission and Fusion Dynamics Generate Efficient, Robust, and Evenly Distributed Network Topologies in Budding Yeast Cells. *Cell Systems* 10(3): 287-297.e5. doi: 10.1016/j.cels.2020.02.002
22. Lewis MR and Lewis WH (1914). Mitochondria in Tissue Culture. *Science* 39(1000): 330-333. doi: 10.1126/science.39.1000.330
23. Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, and Shaw JM (1998). The Dynamin-related GTPase, Dnm1p, Controls Mitochondrial Morphology in Yeast. *J Cell Biol* 143(2): 333-349. doi: 10.1083/jcb.143.2.333
24. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, and Shaw JM (1998). Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. *J Cell Biol* 143(2): 359-373. doi: 10.1083/jcb.143.2.359
25. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, and Shaw JM (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. *Nat Cell Biol* 1(5): 298-304. doi: 10.1083/13014
26. Chang CR and Blackstone C (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. *J Biol Chem* 282(30): 21583-7. doi: 10.1074/jbc.C700083200
27. Chang C-R and Blackstone C (2010). Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. *Ann N Y Acad Sci* 1201(1): 34-39. doi: 10.1111/j.1749-6632.2010.05629.x
28. Otera H, Ishihara N, and Mihara K (2013). New insights into the function and regulation of mitochondrial fission. *Biochim Biophys Acta* 1833(5): 1256-1268. doi: 10.1016/j.bbamcr.2013.02.002
29. Giacometto M, Pyakurel A, Glytsou C, and Scorrano L (2020). The cell biology of mitochondrial membrane dynamics. *Nat Rev Mol Cell Biol* 21(4): 204-224. doi: 10.1038/s41580-020-0210-7
30. Mozdy AD, McCaffery JM, and Shaw JM (2000). Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. *J Cell Biol* 151(2): 367-380. doi: 10.1083/jcb.151.2.367
31. Legesse-Miller A, Massol RH, and Kirchhausen T (2003). Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. *Mol Biol Cell* 14(5): 1953-1963. doi: 10.1091/mbc.e02-10-0657
32. Naylor K, Ingberman E, Okreglak V, Marino M, Hinshaw JE, and Nunnari J (2006). Mdv1 Interacts with Assembled Dnm1 to Promote Mitochondrial Division*. *J Biol Chem* 281(4): 2177-2183. doi: 10.1074/jbc.M507943200
33. Wells RC, Picton LK, Williams SCP, Tan FJ, and Hill RB (2007). Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. *J Biol Chem* 282(46): 33769-33775. doi: 10.1074/jbc.M700807200
34. Griffin EE, Graumann J, and Chan DC (2005). The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. *J Cell Biol* 170(2): 237-248. doi: 10.1083/jcb.200503148
35. Connor OM, Matta SK, and Friedman JR (2023). Completion of mitochondrial division requires the intermembrane space protein Mdi1/Atg44. *J Cell Biol* 222(10): e202303147. doi: 10.1083/jcb.202303147
36. Furukawa K, Hayatsu M, Okuyama K, Fukuda T, Yamashita S-I, Inoue K, Shibata S, and Kanki T (2024). Atg44/Mdi1/mitofissin facilitates Dnm1-mediated mitochondrial fission. *Autophagy* 20(10): 2314-2322. doi: 10.1080/15548627.2024.2360345
37. Fukuda T, Furukawa K, Maruyama T, Yamashita S-I, Noshiro D, Song C, Ogasawara Y, Okuyama K, Alam JM, Hayatsu M, Saigusa T, Inoue K, Ikeda K, Takai A, Chen L, Lahiri V, Okada Y, Shibata S, Murata K, Klionsky DJ, Noda NN, and Kanki T (2023). The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. *Mol Cell* 83(12): 2045-2058.e9. doi: s10.1016/j.molcel.2023.04.022
38. Klecker T, Wemmer M, Haag M, Weig A, Böckler S, Langer T, Nunnari J, and Westermann B (2015). Interaction of MDM33 with mitochondrial inner mem-

brane homeostasis pathways in yeast. *Sci Rep* 5: 18344-18344. doi: 10.1038/srep18344

39. Messerschmitt M, Jakobs S, Vogel F, Fritz S, Dimmer KS, Neupert W, and Westermann B (2003). The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. *J Cell Biol* 160(4): 553-564. doi: 10.1083/jcb.20021113

40. Hammermeister M, Schödel K, and Westermann B (2010). Mdm36 is a mitochondrial fission-promoting protein in *Saccharomyces cerevisiae*. *Mol Biol Cell* 21(14): 2443-2452. doi: 10.1091/mbc.e10-02-0096

41. Sugiura A, McLellan G-L, Fon EA, and McBride HM (2014). A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. *EMBO J* 33(19): 2142-2156. doi: 10.15252/embj.201488104

42. Abeliovich H, Zarei M, Rigbolt KTG, Youle RJ, and Dengjel J (2013). Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. *Nat Commun* 4(1): 2789. doi: 10.1038/ncomms3789

43. Kanki T, Furukawa K, and Yamashita S-i (2015). Mitophagy in yeast: Molecular mechanisms and physiological role. *Biochim Biophys Acta* 1853(10, Part B): 2756-2765. doi: 10.1016/j.bbampcr.2015.01.005

44. Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, Andrade-Navarro MA, and McBride HM (2008). Cargo-Selected Transport from the Mitochondria to Peroxisomes Is Mediated by Vesicular Carriers. *Curr Biol* 18(2): 102-108. doi: 10.1016/j.cub.2007.12.038

45. Hughes AL, Hughes CE, Henderson KA, Yazvenko N, and Gottschling DE (2016). Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. *eLife* 5: e13943. doi: 10.7554/eLife.13943

46. Bernhardt D, Müller M, Reichert AS, and Osiewacz HD (2015). Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. *Sci Rep* 5: 7885-7885. doi: 10.1038/srep07885

47. English AM, Schuler M-H, Xiao T, Kornmann B, Shaw JM, and Hughes AL (2020). ER-mitochondria contacts promote mitochondrial-derived compartment biogenesis. *J Cell Biol* 219(12): e202002144. doi: 10.1083/jcb.202002144

48. Mao K, Wang K, Liu X, and Klionsky Daniel J (2013). The Scaffold Protein Atg11 Recruits Fission Machinery to Drive Selective Mitochondria Degradation by Autophagy. *Dev Cell* 26(1): 9-18. doi: 10.1016/j.devcel.2013.05.024

49. Rapaport D, Brunner M, Neupert W, and Westermann B (1998). Fzo1p Is a Mitochondrial Outer Membrane Protein Essential for the Biogenesis of Functional Mitochondria in *Saccharomyces cerevisiae**. *J Biol Chem* 273(32): 20150-20155. doi: 10.1074/jbc.273.32.20150

50. Brandt T, Cavellini L, Kühlbrandt W, and Cohen MM (2016). A mitofusin-dependent docking ring complex triggers mitochondrial fusion *in vitro*. *eLife* 5: e14618. doi: 10.7554/eLife.14618

51. Simões T, Schuster R, den Brave F, and Escobar-Henriques M (2018). Cdc48 regulates a deubiquitylase cascade critical for mitochondrial fusion. *eLife* 7: e30015. doi: 10.7554/eLife.30015

52. Goodrum JM, Lever AR, Coody TK, Gottschling DE, and Hughes AL (2019). Rsp5 and Mdm30 reshape the mitochondrial network in response to age-induced vacuole stress. *Mol Biol Cell* 30(17): 2141-2154. doi: 10.1091/mbc.E19-02-0094

53. Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, and Nunnari J (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. *J Cell Biol* 151(2): 341-352. doi: 10.1083/jcb.151.2.341

54. Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, and Nunnari J (2006). Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1. *Cell* 127(2): 383-395. doi: 10.1016/j.cell.2006.09.021

55. Herlan M, Vogel F, Bornhövd C, Neupert W, and Reichert AS (2003). Processing of Mgm1 by the Rhomboid-type Protease Pcp1 Is Required for Maintenance of Mitochondrial Morphology and of Mitochondrial DNA*. *J Biol Chem* 278(30): 27781-27788. doi: 10.1074/jbc.M211311200

56. Zick M, Duvezin-Caubet S, Schäfer A, Vogel F, Neupert W, and Reichert AS (2009). Distinct roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. *FEBS Lett* 583(13): 2237-2243. doi: 10.1016/j.febslet.2009.05.053

57. Shirozu R, Yashiroda H, and Murata S (2015). Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion. *Mol Cell Biol* 36(2): 347-362. doi: 10.1128/MCB.00920-15

58. Sesaki H and Jensen RE (2004). Ugo1p Links the Fzo1p and Mgm1p GTPases for Mitochondrial Fusion*. *J Biol Chem* 279(27): 28298-28303. doi: 10.1074/jbc.M401363200

59. Sesaki H and Jensen RE (2001). UGO1 encodes an outer membrane protein required for mitochondrial fusion. *J Cell Biol* 152(6): 1123-1134. doi: 10.1083/jcb.152.6.1123

60. Harner ME, Unger A-K, Geerts WJC, Mari M, Izawa T, Stenger M, Geimer S, Reggiori F, Westermann B, and Neupert W (2016). An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation. *eLife* 5: e18853. doi: 10.7554/eLife.18853

61. Klecker T and Westermann B (2021). Pathways shaping the mitochondrial inner membrane. *Open Biol* 11(12): 210238. doi: 10.1098/rsob.210238

62. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, DeVay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, and Nunnari J (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. *J Cell Biol* 195(2): 323-340. doi: 10.1083/jcb.201107053

63. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, and Neupert W (2011). The mitochondrial contact site complex, a determinant of mitochondrial architecture. *EMBO J* 30(21): 4356-4370-4370. doi: 10.1038/embj.2011.379

64. Friedman JR, Mourier A, Yamada J, McCaffery JM, and Nunnari J (2015). MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. *eLife* 4: e07739. doi: 10.7554/eLife.07739

65. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Bréthes D, di Rago JP, and Velours J (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. *EMBO J* 21(3): 221-230-230. doi: 10.1093/embj/21.3.221

66. Arselin G, Vaillier J, Salin B, Schaeffer J, Giraud M-F, Dautant A, Bréthes D, and Velours J (2004). The Modulation in Subunits e and g Amounts of Yeast ATP Synthase Modifies Mitochondrial Cristae Morphology*. *J Biol Chem* 279(39): 40392-40399. doi: 10.1074/jbc.M404316200

67. Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, Körner C, Jagasia R, Keil T, Baumeister W, Cyrklaff M, Neupert W, and Reichert AS (2009). Formation of cristae and crista junctions in mitochondria depends on antagonism between Fc1 and Su e/g. *J Cell Biol* 185(6): 1047-1063. doi: 10.1083/jcb.200811099

68. Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, and Kühlbrandt W (2012). Structure of the yeast F₁F₀-ATP synthase dimer and its role in shaping the mitochondrial cristae. *Proc Natl Acad Sci U S A* 109(34): 13602-13607. doi: 10.1073/pnas.1204593109

69. Kumar A, Gok MO, Nguyen KN, Connor OM, Reese ML, Wideman JG, Muñoz-Gómez SA, and Friedman JR (2024). A dynamin superfamily-like pseudoenzyme coordinates with MICOS to promote cristae architecture. *Curr Biol* 34(12): 2606-2622.e9. doi: 10.1016/j.cub.2024.04.028

70. Fields SD, Conrad MN, and Clarke M (1998). The *S. cerevisiae* CLU1 and *D. discoideum* cluA genes are functional homologues that influence mitochondrial morphology and distribution. *J Cell Sci* 11(12): 1717-1727. doi: 10.1242/jcs.111.12.1717

71. Galkina KV, Zyrina AN, Golyshev SA, Kashko ND, Markova OV, Sokolov SS, Severin FF, and Knorre DA (2020). Mitochondrial dynamics in yeast with repressed adenine nucleotide translocator AAC2. *Eur J Cell Biol* 99(2): 151071. doi: 10.1016/j.ejcb.2020.151071

72. Dürr M, Escobar-Henriques M, Merz S, Geimer S, Langer T, and Westermann B (2006). Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. *Mol Biol Cell* 17(9): 3745-3755. doi: 10.1091/mbc.e06-01-0053

73. Pernice WM, Vevea JD, and Pon LA (2016). A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in *Saccharomyces cerevisiae*. *Nat Commun* 7(1): 10595. doi: 10.1038/ncomms10595

74. Itoh T, Toh-e A, and Matsui Y (2004). Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. *EMBO J* 23(13): 2520-30. doi: 10.1038/sj.emboj.7600271

75. Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, Ferrero I, and Donnini C (2010). Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. *Hum Mol Genet* 19(6): 1098-1107. doi: 10.1093/hmg/ddp581

76. Seo AY, Sarkleti F, Budin I, Chang C, King C, Kohlwein SD, Senguta P, and Lippincott-Schwartz J (2021). Vacuole phase-partitioning boosts mitochondria activity and cell lifespan through an inter-organelle lipid pipeline. *bioRxiv*. doi: 10.1101/2021.04.11.439383

77. Lang A, John Peter AT, and Kornmann B (2015). ER-mitochondria contact sites in yeast: beyond the myths of ERMEs. *Curr Opin Cell Biol* 35: 7-12. doi: 10.1016/j.ceb.2015.03.002

78. Wozny MR, Di Luca A, Morado DR, Picco A, Khaddaj R, Campomanes P, Ivanović L, Hoffmann PC, Miller EA, Vanni S, and Kukulski W (2023). In situ architecture of the ER-mitochondria encounter structure. *Nature* 618(7963): 188-192. doi: 10.1038/s41586-023-06050-3

79. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, and Walter P (2009). An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen. *Science* 325(5939): 477. doi: 10.1126/science.1175088

80. Burgess SM, Delannoy M, and Jensen RE (1994). MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. *J Cell Biol* 126(6): 1375-1391. doi: 10.1083/jcb.126.6.1375

81. Sogo LF and Yaffe MP (1994). Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. *J Cell Biol* 126(6): 1361-1373. doi: 10.1083/jcb.126.6.1361

82. Berger KH, Sogo LF, and Yaffe MP (1997). Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. *J Cell Biol* 136(3): 545-553. doi: 10.1083/jcb.136.3.545

83. Youngman MJ, Hobbs AEA, Burgess SM, Srinivasan M, and Jensen RE (2004). Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. *J Cell Biol* 164(5): 677-688. doi: 10.1083/jcb.200308012

84. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, and Voeltz GK (2011). ER tubules mark sites of mitochondrial division. *Science* 334(6054): 358-362. doi: 10.1126/science.1207385

85. Abrisch RG, Gumbin SC, Wisniewski BT, Lackner LL, and Voeltz GK (2020). Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. *J Cell Biol* 219(4): e20191122. doi: 10.1083/jcb.20191122

86. Murley A, Lackner LL, Osman C, West M, Voeltz GK, Walter P, and Nunnari J (2013). ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. *eLife* 2: e00422. doi: 10.7554/eLife.00422

87. Boldogh IR, Nowakowski DW, Yang H-C, Chung H, Karmon S, Royes P, and Pon LA (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. *Mol Biol Cell* 14(11): 4618-4627. doi: 10.1091/mbc.e03-04-0225

88. Hobbs AE, Srinivasan M, McCaffery JM, and Jensen RE (2001). Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. *J Cell Biol* 152(2): 401-410. doi: 10.1083/jcb.152.2.401

89. Förtsch J, Hummel E, Krist M, and Westermann B (2011). The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. *J Cell Biol* 194(3): 473-488. doi: 10.1083/jcb.201012088

90. Frederick RL, McCaffery JM, Cunningham KW, Okamoto K, and Shaw JM (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. *J Cell Biol* 167(1): 87-98. doi: 10.1083/jcb.200405100

91. Ackema KB, Hench J, Böckler S, Wang SC, Sauder U, Mergenthaler H, Westermann B, Bard F, Frank S, and Spang A (2014). The small GTPase Arf1 modulates mitochondrial morphology and function. *EMBO J* 33(22): 2659-2675. doi: 10.1525/embj.201489039

92. Kornmann B, Osman C, and Walter P (2011). The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. *Proc Natl Acad Sci U S A* 108(34): 14151-14156. doi: 10.1073/pnas.1111314108

93. Ackema KB, Prescianotto-Baschong C, Hench J, Wang SC, Chia ZH, Mergenthaler H, Bard F, Frank S, and Spang A (2016). Sar1, a Novel Regulator of ER-Mitochondrial Contact Sites. *PLoS One* 11(4): e0154280-e0154280. doi: 10.1371/journal.pone.0154280

94. Altmann K and Westermann B (2005). Role of essential genes in mitochondrial morphogenesis in *Saccharomyces cerevisiae*. *Mol Biol Cell* 16(11): 5410-5417. doi: 10.1091/mbc.e05-07-0678

95. Hermann GJ, King EL, and Shaw JM (1997). The yeast gene, *MDM20*, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. *J Cell Biol* 137(1): 141-153. doi: 10.1083/jcb.137.1.141

96. Boldogh IR, Yang H-C, Nowakowski WD, Karmon SL, Hays LG, Yates JR, and Pon LA (2001). Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. *Proc Natl Acad Sci U S A* 98(6): 3162. doi: 10.1073/pnas.051494698

97. Fehrenbacher KL, Yang H-C, Gay AC, Huckaba TM, and Pon LA (2004). Live Cell Imaging of Mitochondrial Movement along Actin Cables in Budding Yeast. *Curr Biol* 14(22): 1996-2004. doi: 10.1016/j.cub.2004.11.004

98. Klecker T and Westermann B (2020). Asymmetric inheritance of mitochondria in yeast. *Biol Chem* 401(6-7): 779-791. doi: 10.1515/hsz-2019-0439

99. Böckler S, Chelius X, Hock N, Klecker T, Wolter M, Weiss M, Braun RJ, and Westermann B (2017). Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. *J Cell Biol* 216(8): 2481-2498. doi: 10.1083/jcb.201611197

100. Higuchi R, Vevea Jason D, Swayne Theresa C, Chojnowski R, Hill V, Boldogh Istvan R, and Pon Liza A (2013). Actin Dynamics Affect Mitochondrial Quality Control and Aging in Budding Yeast. *Curr Biol* 23(23): 2417-2422. doi: 10.1016/j.cub.2013.10.022

101. Boldogh I, Vojtov N, Karmon S, and Pon LA (1998). Interaction between Mitochondria and the Actin Cytoskeleton in Budding Yeast Requires Two Integral Mitochondrial Outer Membrane Proteins, Mmm1p and Mdm10p. *J Cell Biol* 141(6): 1371-1381. doi: 10.1083/jcb.141.6.1371

102. Chen Y-C, Cheng T-H, Lin W-L, Chen C-L, Yang WY, Blackstone C, and Chang C-R (2019). Srv2 Is a Pro-fission Factor that Modulates Yeast Mitochondrial Morphology and Respiration by Regulating Actin Assembly. *iScience* 11: 305-317. doi: 10.1016/j.isci.2018.12.021

103. Jensen RE, Aiken Hobbs AE, Cerveny KL, and Sesaki H (2000). Yeast mitochondrial dynamics: Fusion, division, segregation, and shape. *Microsc Res Tech* 51(6): 573-583. doi: 10.1002/1097-0029(20001215)51:6<573::AID-JEMT>3.0.CO;2-2

104. Freeman NL, Chen Z, Horenstein J, Weber A, and Field J (1995). An Actin Monomer Binding Activity Localizes to the Carboxyl-terminal Half of the *Saccharomyces cerevisiae* Cyclase-associated Protein (*). *J Biol Chem* 270(10): 5680-5685. doi: 10.1074/jbc.270.10.5680

105. Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, Ruberto FP, Nemir M, Wai T, Pedrazzini T, and Manley S (2021). Distinct fission signatures predict mitochondrial degradation or biogenesis. *Nature* 593(7859): 435-439. doi: 10.1038/s41586-021-03510-6

106. Gancedo Juana M (1998). Yeast Carbon Catabolite Repression. *Microbiol Mol Biol Rev* 62(2): 334-361. doi: 10.1128/MMBR.62.2.334-361.1998

107. Kitagaki H and Takagi H (2014). Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies. *J Biosci Bioeng* 117(4): 383-393. doi: 10.1016/j.jbiosc.2013.09.011

108. Chen C-L, Chen Y-C, Huang W-L, Lin S, Daugelavičius R, Rapoport A, and Chang C-R (2021). A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in *Saccharomyces cerevisiae*. *Int J Mol Sci* 22(9): 4607. doi: 10.3390/ijms22094607

109. Laporte D, Gouleme L, Jimenez L, Khemiri I, and Sagot I (2018). Mitochondria reorganization upon proliferation arrest predicts individual yeast cell fate. *eLife* 7: e35685. doi: 10.7554/eLife.35685

110. Wang IH, Chen H-Y, Wang Y-H, Chang K-W, Chen Y-C, and Chang C-R (2014). Resveratrol modulates mitochondria dynamics in replicative senescent yeast cells. *PLoS One* 9(8): e104345-e104345. doi: 10.1371/journal.pone.0104345

111. Scheckhuber CO, Erjavec N, Tinazli A, Hamann A, Nyström T, and Osiewacz HD (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. *Nat Cell Biol* 9(1): 99-105. doi: 10.1038/ncb1524

112. Ren Q, Brenner R, Boothby TC, and Zhang Z (2020). Membrane and lipid metabolism plays an important role in desiccation resistance in the yeast *Saccharomyces cerevisiae*. *BMC Microbiol* 20(1): 338-338. doi: 10.1186/s12866-020-02025-w

113. Neutzner A and Youle RJ (2005). Instability of the Mitofusin Fzo1 Regulates Mitochondrial Morphology during the Mating Response of the Yeast *Saccharomyces cerevisiae**. *J Biol Chem* 280(19): 18598-18603. doi: 10.1074/jbc.M500807200

114. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, and Shoubridge EA (2016). *SLC25A46* is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. *EMBO Mol Med* 8(9): 1019-1038. doi: 10.15252/emmm.201506159

115. Edington AR, Connor OM, Love AC, Marlar-Pavey M, and Friedman JR (2024). Functionally conserved inner mitochondrial membrane proteins CCDC51 and Mdm33 demarcate a subset of fission events. *J Cell Biol* 224(3): e202403140. doi: 10.1083/jcb.202403140

116. Chernyakov I, Santiago-Tirado F, and Bretscher A (2013). Active Segregation of Yeast Mitochondria by Myo2 Is Essential and Mediated by Mmr1 and Ypt11. *Curr Biol* 23(18): 1818-1824. doi: 10.1016/j.cub.2013.07.053

117. Escobar-Henriques M, Westermann B, and Langer T (2006). Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. *J Cell Biol* 173(5): 645-650. doi: 10.1083/jcb.200512079

118. Cohen MM, Amiott EA, Day AR, Leboucher GP, Pryce EN, Glickman MH, McCaffery JM, Shaw JM, and Weissman AM (2011). Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. *J Cell Sci* 124(Pt 9): 1403-1410. doi: 10.1242/jcs.079293