Advance online publication:

This section includes articles accepted for publication in Microbial Cell, which have not been released in a regular issue, yet. Please note that the PDF versions of advance publication articles are generally paginated starting with page 1. This does not correspond to the final pagination upon release of the issue it will appear in.

 

Milestones in Bacillus subtilis sporulation research

Eammon P. Riley, Corinna Schwarz, Alan I. Derman and Javier Lopez-Garrido

Show Abstract

Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.

PDF | Published online: 27/11/2020 | In press

Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA

Griet Van Zeebroeck Liesbeth Demuyser, Zhiqiang Zhang, Ines Cottignie and Johan M. Thevelein

Show Abstract

A major signal transduction pathway regulating cell growth and many associated physiological properties as a function of nutrient availability in the yeast Saccharomyces cerevisiae is the protein kinase A (PKA) pathway. Glucose activation of PKA is mediated by G-protein coupled receptor (GPCR) Gpr1, and secondary messenger cAMP. Other nutrients, including nitrogen, phosphate and sulfate, activate PKA in accordingly-starved cells through nutrient transceptors, but apparently without cAMP signaling. We have now used an optimized EPAC-based fluorescence resonance energy transfer (FRET) sensor to precisely monitor in vivo cAMP levels after nutrient addition. We show that GPCR-mediated glucose activation of PKA is correlated with a rapid transient increase in the cAMP level in vivo, whereas nutrient transceptor-mediated activation by nitrogen, phosphate or sulfate, is not associated with any significant increase in cAMP in vivo. We also demonstrate direct physical interaction between the Gap1 amino acid transceptor and the catalytic subunits of PKA, Tpk1, 2 and 3. In addition, we reveal a conserved consensus motif in the nutrient transceptors that is also present in Bcy1, the regulatory subunit of PKA. This suggests that nutrient transceptor activation of PKA may be mediated by direct release of bound PKA catalytic subunits, triggered by the conformational changes occurring during transport of the substrate by the transceptor. Our results support a model in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.

PDF | Published online: 12/10/2020 | In press

Extracellular vesicles: An emerging platform in gram-positive bacteria

Swagata Bose, Shifu Aggarwal, Durg Vijai Singh and Narottam Acharya

Show Abstract

Extracellular vesicles (EV), also known as membrane vesicles, are produced as an end product of secretion by both pathogenic and non-pathogenic bacteria. Several reports suggest that archaea, gram-negative bacteria, and eukaryotic cells secrete membrane vesicles as a means for cell-free intercellular communication. EVs influence intercellular communication by transferring a myriad of biomolecules including genetic information. Also, EVs have been implicated in many phenomena such as stress response, intercellular competition, lateral gene transfer, and pathogenicity. However, the cellular process of secreting EVs in gram-positive bacteria is less studied. A notion with the thick cell-walled microbes such as gram-positive bacteria is that the EV release is impossible among them. The role of gram-positive EVs in health and diseases is being studied gradually. Being nano-sized, the EVs from gram-positive bacteria carry a diversity of cargo compounds that have a role in bacterial competition, survival, invasion, host immune evasion, and infection. In this review, we summarise the current understanding of the EVs produced by gram-positive bacteria. Also, we discuss the functional aspects of these components while comparing them with gram-negative bacteria.

PDF | Published online: 05/10/2020 | In press

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.

Close