Advance online publication:

This section includes articles accepted for publication in Microbial Cell, which have not been released in a regular issue, yet. Please note that the PDF versions of advance publication articles are generally paginated starting with page 1. This does not correspond to the final pagination upon release of the issue it will appear in.


Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae

Maria Stenger, Duc Tung Le, Till Klecker and Benedikt Westermann

Show Abstract

The production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast Saccharomyces cerevisiae as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth. Next, we induced loss of mtDNA in the yeast deletion collection by growth on ethidium bromide-containing medium and identified twelve genes that are essential for viability in the absence of mtDNA (i.e. petite-negative). Replenishment of mtDNA by cytoduction showed that respiratory-deficient phenotypes are highly variable in many yeast mutants. Using a mitochondrial genome carrying a selectable marker, ARG8m, we screened for mutants that are specifically defective in maintenance of mtDNA and mitochondrial protein synthesis. We found that up to 176 nuclear genes are required for expression of mitochondria-encoded proteins during fermentative growth. Taken together, our data provide a comprehensive picture of the molecular processes that are required for respiratory metabolism in a simple eukaryotic cell.

PDF | Supplemental Information | Published online: 30/06/2020 | In press

Regulation of the mitochondrial permeability transition pore and its effects on aging

Damiano Pellegrino-Coppola

Show Abstract

Aging is an evolutionarily conserved process and is tightly connected to mitochondria. To uncover the aging molecular mechanisms related to mitochondria, different organisms have been extensively used as model systems. Among these, the budding yeast Saccharomyces cerevisiae has been reported multiple times as a model of choice when studying cellular aging. In particular, yeast provides a quick and trustworthy system to identify shared aging genes and pathway patterns. In this viewpoint on aging and mitochondria, I will focus on the mitochondrial permeability transition pore (mPTP), which has been reported and proposed as a main player in cellular aging. I will make several parallelisms with yeast to highlight how this unicellular organism can be used as a guidance system to understand conserved cellular and molecular events in multicellular organisms such as humans. Overall, a thread connecting the preservation of mitochondrial functionality with the activity of the mPTP emerges in the regulation of cell survival and cell death, which in turn could potentially affect aging and aging-related diseases.

PDF | Published online: 22/06/2020 | In press

A new role for proteins subunits of RNase P: stabilization of the telomerase holoenzyme

P. Daniela Garcia and Virginia A. Zakian

Show Abstract

RNase P, an RNA-protein complex, is essential for processing tRNAs. Three of the ten protein subunits of Saccharomyces cerevisiae RNase P (and a related complex, RNase MRP) co-purify with yeast telomerase, another RNA-protein complex. The three telomerase-associated proteins, Pop1, 6 and 7, bind to TLC1, the RNA subunit of telomerase. In a recent study (Garcia et al. Nat Commun), we used temperature sensitive alleles of the essential POP genes to determine their role in telomerase biogenesis. At permissive temperature, pop mutant cells grow normally, and the abundance of most proteins, including protein subunits of telomerase, is similar to wild type (WT). However, telomeres are short, and the amount of the mature telomerase holoenzyme is low. Unlike the RNA subunit of RNase MRP, TLC1 is more abundant in pop cells and properly folded, except at the Cs2a/TeSS domain where the Pop proteins bind. These defects correlate with defective movement of TLC1 from the cytoplasm, where it associates with telomerase proteins, back to the nucleus where it lengthens telomeres. Thus, Pop proteins are needed for the stable association of telomerase proteins with TLC1, and their reduction sequesters mature telomerase in the cytoplasm, away from its nuclear substrates.

PDF | Published online: 17/06/2020 | In press

Lipid droplet biogenesis from specialized ER subdomains

Vineet Choudhary and Roger Schneiter

Show Abstract

Lipid droplets (LDs) are cellular compartments dedicated to the storage of metabolic energy in the form of neutral lipids, commonly known as “fat”. The biogenesis of LDs takes place in the endoplasmic reticulum (ER), but its spatial and temporal organization is poorly understood. How exactly sites of LD formation are selected and the succession of proteins and lipids needed to mediate this process remains to be defined. In our current study we show that the yeast triacylglycerol (TAG)-synthases, Lro1 and Dga1 get recruited to discrete ER subdomains where they initiate TAG synthesis and hence LD formation (Choudhary et al. (2020), J Cell Biol). These ER subdomains are defined by yeast seipin, Fld1, and a regulator of diacylglycerol (DAG) production, Nem1. Both Fld1 and Nem1 are ER proteins which localize at contact sites between the ER and LDs. Interestingly, even in cells lacking LDs, Fld1 and Nem1 show punctate localization at ER subdomains independently of each other, but they are required together to recruit the TAG-synthases and hence create functional sites of LD biogenesis. Fld1/Nem1-containing ER subdomains recruit additional LD biogenesis factors, such as Yft2, Pex30, Pet10 and Erg6, and these membrane domains become enriched in DAG. In conclusion, Fld1 and Nem1 play a crucial role in defining ER subdomains for the recruitment of proteins and lipids needed to initiate LD biogenesis.

PDF | Published online: 16/06/2020 | In press

From the Uncharacterized Protein Family 0016 to the GDT1 family: Molecular insights into a newly-characterized family of cation secondary transporters

Louise Thines, Jiri Stribny and Pierre Morsomme

Show Abstract

The Uncharacterized Protein Family 0016 (UPF0016) gathers poorly studied membrane proteins well conserved through evolution that possess one or two copies of the consensus motif Glu-x-Gly-Asp-(Arg/Lys)-(Ser/Thr). Members are found in many eukaryotes, bacteria and archaea. The interest for this protein family arose in 2012 when its human member TMEM165 was linked to the occurrence of Congenital Disorders of Glycosylation (CDGs) when harbouring specific mutations. Study of the UPF0016 family is undergone through the characterization of the bacterium Vibrio cholerae (MneA), cyanobacterium Synechocystis (SynPAM71), yeast Saccharomyces cerevisiae (Gdt1p), plant Arabidopsis thaliana (PAM71 and CMT1), and human (TMEM165) members. These proteins have all been identified as transporters of cations, more precisely of Mn2+, with an extra reported function in Ca2+ and/or H+ transport for some of them. Apart from glycosylation in humans, the UPF0016 members are required for lactation in humans, photosynthesis in plants and cyanobacteria, Ca2+ signaling in yeast, and Mn2+ homeostasis in the five aforementioned species. The requirement of the UPF0016 members for key physiological processes most likely derives from their transport activity at the Golgi membrane in human and yeast, the chloroplasts membranes in plants, the thylakoid and plasma membranes in cyanobacteria, and the cell membrane in bacteria. In the light of these studies on various UPF0016 members, this family is not considered as uncharacterized anymore and has been renamed the Gdt1 family according to the name of its S. cerevisiae member. This review aims at assembling and confronting the current knowledge in order to identify shared and distinct features in terms of transported molecules, mode of action, structure, etc., as well as to better understand their corresponding physiological roles.

PDF | Published online: 15/06/2020 | In press

A broad-spectrum antibiotic adjuvant SLAP-S25: one stone many birds

Meirong Song and Kui Zhu

Show Abstract

The rapid emergence of antibiotic resistance has caused serious threat to global health. The worldwide search for novel classes of antibiotics to combat multidrug-resistant (MDR) bacteria is barren since about half a century ago. One of the promising strategies to combat the MDR pathogens is the combinational therapy. For instance, trimethoprim and clavulanic acid are routinely used to enhance the efficacies of sulfonamides and β-lactam antibiotics in clinic, respectively. Nevertheless, such adjuvants are specific for certain classes of antibiotics. We hypothesized that the combinational treatments with antibiotic adjuvants targeting the bacterial membrane may potentiate other antibiotics against MDR Gram-negative pathogens. In our recent publication (Song et al., doi: 10.1038/s41564-020-0723-z), we demonstrate a short linear antibacterial peptide SLAP-S25, which potentiates multiple antibiotics with different modes of action against Gram-negative bacteria. The mechanism studies show that SLAP-S25 targets both lipopolysaccharide (LPS) in the outer membrane and phosphatidylglycerol (PG) in the inner membrane of Escherichia coli. The impaired bacterial membrane caused by SLAP-S25 promotes the intracellular accumulation of antibiotics in bacteria. Our results indicate that the bacterial membranes are promising targets for the discovery of new antibiotics or antibiotic adjuvants to combat MDR bacteria associated infections.

PDF | Published online: 15/06/2020 | In press

Hiding in plain sight: vesicle-mediated export and transmission of prion-like proteins

Mehdi Kabani

Show Abstract

Infectious proteins or prions are non-native conformations of proteins that are the causative agents of devastating neurodegenerative diseases in humans and heritable traits in filamentous fungi and yeasts. Prion proteins form highly ordered self-perpetuating fibrillar aggregates that traffic vertically and horizontally from cell to cell. The spreading of these infectious entities relies on different mechanisms, among which the extracellular vesicles (EV)-mediated traffic. The prion form of the yeast Saccharomyces cerevisiae Sup35p translation terminator causes the [PSI+] nonsense suppression phenotype. This fascinating biological model helped us shape our understanding of the mechanisms of formation, propagation and elimination of infectious protein aggregates. We discovered that Sup35p is exported via EV, both in its soluble and aggregated infectious states. We recently reported that high amounts of Sup35p prion particles are exported to the yeast periplasm via periplasmic vesicles (PV) in glucose-starved cells. EV and PV are different in terms of size and protein content, and their export is inversely regulated by glucose availability in the growth medium. We believe these are important observations that should make us revise our current view on the way yeast prions propagate. Hence, I propose several hypotheses as to the significance of these observations for the transmission of yeast prions. I also discuss how yeast could be used as a powerful tractable biological model to investigate the molecular mechanisms of vesicle-mediated export of pathological protein aggregates implicated in neurodegenerative diseases.

PDF | Published online: 02/06/2020 | In press

Regulation of Cdc42 for polarized growth in budding yeast

Kristi E. Miller, Pil Jung Kang and Hay-Oak Park

Show Abstract

The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.

PDF | Published online: 19/05/2020 | In press

Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes

Tiziana Cervelli, Samuele Lodovichi, Francesca Bellè and Alvaro Galli

Show Abstract

Technological advances are continuously revealing new genetic variants that are often difficult to interpret. As one of the most genetically tractable model organisms, yeast can have a central role in determining the consequences of human genetic variation. DNA repair gene mutations are associated with many types of cancers, therefore the evaluation of the functional impact of these mutations is crucial for risk assessment and for determining therapeutic strategies. Owing to the evolutionary conservation of DNA repair pathways between human cells and the yeast Saccharomyces cerevisiae, several functional assays have been developed. Here, we describe assays for variants of human genes belonging to the major DNA repair pathways divided in functional assays for human genes with yeast orthologues and human genes lacking a yeast orthologue. Human genes with orthologues can be studied by introducing the correspondent human mutations directly in the yeast gene or expressing the human gene carrying the mutations; while the only possible approach for human genes without a yeast orthologue is the heterologous expression. The common principle of these approaches is that the mutated gene determines a phenotypic alteration that can vary according to the gene studied and the domain of the protein. Here, we show how the versatility of yeast can help in classifying cancer-associated variants.

PDF | Published online: 18/05/2020 | In press

Histone H3E73Q and H4E53A mutations cause recombinogenic DNA damage

Pedro Ortega, Desiré García-Pichardo, Marta San Martin-Alonso, Ana G. Rondón, Belén Gómez-González and Andrés Aguilera

Show Abstract

The stability and function of eukaryotic genomes is closely linked to histones and to chromatin structure. The state of the chromatin not only affects the probability of DNA to undergo damage but also DNA repair. DNA damage can result in genetic alterations and subsequent development of cancer and other genetic diseases. Here, we identified two mutations in conserved residues of histone H3 and histone H4 (H3E73Q and H4E53A) that increase recombinogenic DNA damage. Our results suggest that the accumulation of DNA damage in these histone mutants is largely independent on transcription and might arise as a consequence of problems occurring during DNA replication. This study uncovers the relevance of H3E73 and H4E53 residues in the protection of genome integrity.

PDF | Published online: 24/04/2020 | In press

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.