Table of contents

Volume 2, Issue 1, pp. 1 - 32, January 2015

Issue cover
Cover: The non-invasive highly pro-inflammatory mxiD Shigella GFP strain (green) promotes pronounced HP1g phosphorylation in the colon. The picture shows a phospho-HP1g immunostaining (visualized in red) co-localizing with Dapi (blue) and principally located at the lamina propria and the epithelial layer.Image acquired by Benoit Meijer (Institut Pasteur, France); modified by MIC. The cover is published under the Creative Commons Attribution (CC BY) license. Enlarge issue cover

News and Thoughts

The emerging role of complex modifications of tRNALysUUU in signaling pathways

Patrick C. Thiaville and Valérie de Crécy-Lagard

page 1-4 | 10.15698/mic2015.01.185 | Full text | PDF |

Research Articles

Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites

Carine F. Djuika, Jaime Huerta-Cepas, Jude M. Przyborski, Sophia Deil, Cecilia P. Sanchez, Tobias Doerks, Peer Bork, Michael Lanzer, and Marcel Deponte.

page 5-13 | 10.15698/mic2015.01.182 | Full text | PDF | Abstract

Horizontal gene transfer has emerged as a crucial driving force for the evolution of eukaryotes. This also includes Plasmodium falciparum and related economically and clinically relevant apicomplexan parasites, whose rather small genomes have been shaped not only by natural selection in different host populations but also by horizontal gene transfer following endosymbiosis. However, there is rather little reliable data on horizontal gene transfer between animal hosts or bacteria and apicomplexan parasites. Here we show that apicomplexan homologues of peroxiredoxin 5 (Prx5) have a prokaryotic ancestry and therefore represent a special subclass of Prx5 isoforms in eukaryotes. Using two different immunobiochemical approaches, we found that the P. falciparum Prx5 homologue is dually localized to the parasite plastid and cytosol. This dual localization is reflected by a modular Plasmodium-specific gene architecture consisting of two exons. Despite the plastid localization, our phylogenetic analyses contradict an acquisition by secondary endosymbiosis and support a gene fusion event following a horizontal prokaryote-to-eukaryote gene transfer in early apicomplexans. The results provide unexpected insights into the evolution of apicomplexan parasites as well as the molecular evolution of peroxiredoxins, an important family of ubiquitous, usually highly concentrated thiol-dependent hydroperoxidases that exert functions as detoxifying enzymes, redox sensors and chaperones.

Two distinct and competitive pathways confer the cellcidal actions of artemisinins

Chen Sun, Jian Li, Yu Cao, Gongbo Long and Bing Zhou

page 14-25 | 10.15698/mic2015.01.181 | Full text | PDF | Abstract

The biological actions of artemisinin (ART), an antimalarial drug derived from Artemisia annua, remain poorly understood and controversial. Besides potent antimalarial activity, some of artemisinin derivatives (together with artemisinin, hereafter referred to as ARTs), in particular dihydroartemisinin (DHA), are also associated with anticancer and other antiparasitic activities. In this study, we used baker’s yeast Saccharomyces cerevisiae as cellular and genetic model to investigate the molecular and cellular properties of ARTs. Two clearly separable pathways exist. While all ARTs exhibit potent anti-mitochondrial actions as shown before, DHA exerts an additional strong heme-dependent, likely mitochondria-independent inhibitory action. More importantly, heme antagonizes the mitochondria-dependent cellcidal action. Indeed, when heme synthesis was inhibited, the mitochondria-dependent cellcidal action of ARTs could be dramatically strengthened, and significant yeast growth inhibition at as low as 100 nM ART, an increase of about 25 folds in sensitivity, was observed. We conclude that ARTs are endowed with two major and distinct types of properties: a potent and specific mitochondria-dependent reaction and a more general and less specific heme-mediated reaction. The competitive nature of these two actions could be explained by their shared source of the consumable ARTs, so that inhibition of the heme-mediated degradation pathway would enable more ARTs to be available for the mitochondrial action. These properties of ARTs can be used to interpret the divergent antimalarial and anticancer actions of ARTs.


Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription

Habiba Harouz, Christophe Rachez, Benoit Meijer, Christian Muchardt, Laurence Arbibe.

page 26-28 | 10.15698/mic2015.01.183 | Full text | PDF | Abstract

Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector “uses” HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014)). OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

W. Seth Childers and Lucy Shapiro

page 29-32 | 10.15698/mic2015.01.184 | Full text | PDF | Abstract

Bacteria face complex decisions when initiating developmental events such as sporulation, nodulation, virulence, and asymmetric cell division. These developmental decisions require global changes in genomic readout, and bacteria typically employ intricate (yet poorly understood) signaling networks that enable changes in cell function. The bacterium Caulobacter crescentus divides asymmetrically to yield two functionally distinct cells: a motile, chemotactic swarmer cell, and a sessile stalked cell with replication and division capabilities. Work from several Caulobacter labs has revealed that differentiation requires concerted regulation by several two-component system (TCS) signaling pathways that are differentially positioned at the poles of the predivisional cell (Figure 1). The strict unidirectional flow from histidine kinase (HK) to the response regulator (RR), observed in most studied TCS, is difficult to reconcile with the notion that information can be transmitted between two or more TCS signaling pathways. In this study, we uncovered a mechanism by which daughter cell fate, which is specified by the DivJ-DivK-PleC system and effectively encoded in the phosphorylation state of the single-domain RR DivK, is communicated to the CckA-ChpT-CtrA signaling pathway that regulates more than 100 genes for polar differentiation, replication initiation and cell division. Using structural biology and biochemical findings we proposed a mechanistic basis for TCS pathway coupling in which the DivL pseudokinase is repurposed as a sensor rather than participant in phosphotransduction.

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.