TABLE 1. Papillomavirus proteins and functions.
19. Stubenrauch F, Hummel M, Iftner T, Laimins LA (2000). The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 74(3):1178-86. http://dx.doi.org/10.1128/jvi.74.3.1178-1186.2000
20. DiMaio D, Petti LM (2013). The E5 proteins. Virology 445(1-2):99-114. http://dx.doi.org/10.1016/j.virol.2013.05.006
21. Ajiro M, Zheng ZM (2015). E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. MBio 6(1):e02068-14. http://dx.doi.org/10.1128/mbio.02068-14
22. Wilson VG, West M, Woytek K, Rangasamy D (2002). Papillomavirus E1 proteins: form, function, and features. Virus Genes 24(3):275-90. http://dx.doi.org/10.1023/a:1015336817836
23. Zheng G, Schweiger MR, Martinez-Noel G, Zheng L, Smith JA, Harper JW, Howley PM (2009). Brd4 regulation of papillomavirus protein E2 stability. J Virol 83(17):8683-92. http://dx.doi.org/10.1128/jvi.00674-09
24. McBride AA (2013). The papillomavirus E2 proteins. Virology 445(1-2):57-79. http://dx.doi.org/10.1016/j.virol.2013.06.006
25. Doorbar J (2013). The E4 protein; structure, function and patterns of expression. Virology 445(1-2):80-98. http://dx.doi.org/10.1016/j.virol.2013.07.008
26. Belleudi F, Nanni M, Raffa S, Torrisi MR (2015). HPV16 E5 deregulates the autophagic process in human keratinocytes.. Oncotarget 6(11):9370-86. http://dx.doi.org/10.18632/oncotarget.3326
27. Liu C, Lin J, Li L, Zhang Y, Chen W, Cao Z, Zuo H, Chen C, Kee K (2015). HPV16 early gene E5 specifically reduces miRNA-196a in cervical cancer cells. Sci Rep 5:7653. http://dx.doi.org/10.1038/srep07653
28. Schlegel R, Wade-Glass M, Rabson MS, Yang YC (1986). The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. Science 233(4762):464-7. http://dx.doi.org/10.1126/science.3014660
29. Krawczyk E, Suprynowicz FA, Hebert JD, Kamonjoh CM, Schlegel R (2011). The human papillomavirus type 16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol 85(21):10968-75. http://dx.doi.org/10.1128/jvi.00706-11
30. Wallace NA, Robinson K, Howie HL, Galloway DA (2015). beta-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation. PLoS Pathog 11(3):e1004687. http://dx.doi.org/10.1371/journal.ppat.1004687
31. White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW, Howley PM (2012). Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol 86(24):13174-86. http://dx.doi.org/10.1128/jvi.02172-12
32. Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, Szalmas A, Thatte J, Thomas M, Tomaic V, Banks L (2015). The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses 7(7):3530-51. http://dx.doi.org/10.3390/v7072785
33. White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, Munger K, Harper JW, Howley PM (2012). Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci USA 109(5):E260-E267. http://dx.doi.org/10.1073/pnas.1116776109
34. Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND (2006). Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 77(24):13125-35. http://dx.doi.org/10.1128/jvi.00724-06
35. Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003). Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 13(4): 367–374. http://dx.doi.org/10.1128/jvi.77.24.13125-13135.2003
36. Sapp M, Day PM (2009). Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384(2):400-9. http://dx.doi.org/10.1016/j.virol.2008.12.022
37. Gornemann J, Hofmann TG, Will H, Muller M (2002). Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology 303(1):69-78. http://dx.doi.org/10.1006/viro.2002.1670
38. Florin L, Becker KA, Lambert C, Nowak T, Sapp C, Strand D, Streeck RE, Sapp M (2006). Identification of a dynein interacting domain in the papillomavirus minor capsid protein L2. J Virol 80(13):6691-6. http://dx.doi.org/10.1128/jvi.00057-06
39. Nonnenmacher M, Salmon J, Jacob Y, Orth G, Breitburd F (2006). Cottontail rabbit papillomavirus E8 protein is essential for wart formation and provides new insights into viral pathogenesis. J Virol 80(10):4890-900. http://dx.doi.org/10.1128/jvi.80.10.4890-4900.2006
40. Stubenrauch F, Zobel T, Iftner T (2001). The E8 domain confers a novel long-distance transcriptional repression activity on the E8E2C protein of high-risk human papillomavirus type 31. J Virol 75(9):4139-49. http://dx.doi.org/10.1128/jvi.75.9.4139-4149.2001
41. Chiang CM, Broker TR, Chow LT (2009). An E1M–E2C fusion protein encoded by human papillomavirus type 11 is asequence-specific transcription repressor. J Virol 65(6):3317-29. http://jvi.asm.org/content/65/6/3317.long