Special Issues are flexible collections of articles, that have a common topic. The articles may be published in various monthly issues.


Synopsis

Sexually transmitted infections (STIs) are commonly spread via sexual contact and have a major impact on sexual, reproductive and neonatal health, but can also cause disastrous and life-threatening complications if left untreated. In addition to this personal burden, STIs also represent a socioeconomic problem, deriving in treatment costs of tremendous proportions. With this Special Issue, Microbial Cell compiles a series of articles that focus on the eight major STIs: (syphilis, gonorrhea, chlamydia, trichomoniasis, human papilloma virus, herpes simplex virus, hepatitis B virus, and human immunodeficiency virus). Thereby all relevant features of each infection are covered: (i) etiology, transmission and protection; (ii) pathology/symptomatology; (iii) epidemiology, incidence and prevalence; (iv) treatment and curability; and (v) molecular mechanisms of infection.
Issue cover
Cover: Superposed images of herpes-infected squamous cells (image by Edward O. Uthman, Brown & Associates Medical Laboratories, LLP, USA and obtained via Flickr) and the schematic drawing of urethral exudate containing Neisseria gonorrhoeae (image by Dr. Norman Jacobs, Center for Disease Control and Prevention, USA and obtained via the CDC Public Health Image Library , ID#3693); images modified by MIC. The cover is published under the Creative Commons Attribution (CC BY) license. Enlarge issue cover

Editorial - Special Issue on Sexually Transmitted Infections

Sexually transmitted infections: old foes on the rise

Didac Carmona-Gutierrez, Katharina Kainz and Frank Madeo

2016 | 10.15698/mic2016.09.522 | Full text | PDF | Abstract

Sexually transmitted infections (STIs) are commonly spread via sexual contact. It is estimated that one million STIs are acquired every day worldwide. Besides their impact on sexual, reproductive and neonatal health, they can cause disastrous and life-threatening complications if left untreated. In addition to this personal burden, STIs also represent a socioeconomic problem, deriving in treatment costs of tremendous proportions. Despite a substantial progress in diagnosis, treatment and prevention, the incidence of many common STIs is increasing, and STIs continue to represent a global public health problem and a major cause for morbidity and mortality. With this Special Issue, Microbial Cell provides an in-depth overview of the eight major STIs, covering all relevant features of each infection.

Reviews

Chlamydia trachomatis Genital Infections

Catherine M. O’Connell and Morgan E. Ferone

2016 | 10.15698/mic2016.09.525 | Full text | PDF | Abstract

Etiology, transmission and protection: Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infection (STI) globally. However, C. trachomatis also causes trachoma in endemic areas, mostly Africa and the Middle East, and is a leading cause of preventable blindness worldwide. Epidemiology, incidence and prevalence: The World Health Organization estimates 131 million new cases of C. trachomatis genital infection occur annually. Globally, infection is most prevalent in young women and men (14-25 years), likely driven by asymptomatic infection, inadequate partner treatment and delayed development of protective immunity. Pathology/Symptomatology: C. trachomatis infects susceptible squamocolumnar or transitional epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms are often mild or absent but ascending infection in some women may lead to Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as ectopic pregnancy, infertility and chronic pelvic pain. Complications of infection in men include epididymitis and reactive arthritis. Molecular mechanisms of infection: Chlamydiae manipulate an array of host processes to support their obligate intracellular developmental cycle. This leads to activation of signaling pathways resulting in disproportionate influx of innate cells and the release of tissue damaging proteins and pro-inflammatory cytokines. Treatment and curability: Uncomplicated urogenital infection is treated with azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days). However, antimicrobial treatment does not ameliorate established disease. Drug resistance is rare but treatment failures have been described. Development of an effective vaccine that protects against upper tract disease or that limits transmission remains an important goal.

Genital Herpes: Insights into Sexually Transmitted Infectious Disease

Dinesh Jaishankar and Deepak Shukla

2016 | 10.15698/mic2016.09.528 | Full text | PDF | Abstract

Etiology, transmission and protection: Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections with recurring manifestations throughout the lifetime of infected hosts. Currently no effective vaccines or prophylactics exist that provide complete protection or immunity from the virus, which is endemic throughout the world. Pathology/Symptomatology: Primary and recurrent infections result in lesions and inflammation around the genital area and the latter accounts for majority of genital herpes instances. Immunocompromised patients including neonates are susceptible to additional systemic infections including debilitating consequences of nervous system inflammation. Epidemiology, incidence and prevalence: More than 500 million people are infected worldwide and most reported cases involve the age groups between 16-40 years, which coincides with an increase in sexual activity among this age group. While these numbers are an estimate, the actual numbers may be underestimated as many people are asymptomatic or do not report the symptoms. Treatment and curability: Currently prescribed medications, mostly nucleoside analogs, only reduce the symptoms caused by an active infection, but do not eliminate the virus or reduce latency. Therefore, no cure exists against genital herpes and infected patients suffer from periodic recurrences of disease symptoms for their entire lives. Molecular mechanisms of infection: The last few decades have generated many new advances in our understanding of the mechanisms that drive HSV infection. The viral entry receptors such as nectin-1 and HVEM have been identified, cytoskeletal signaling and membrane structures such as filopodia have been directly implicated in viral entry, host motor proteins and their viral ligands have been shown to facilitate capsid transport and many host and HSV proteins have been identified that help with viral replication and pathogenesis. New understanding has emerged on the role of autophagy and other innate immune mechanisms that are subverted to enhance HSV pathogenesis. This review summarizes our current understanding of HSV-2 and associated diseases and available or upcoming new treatments.

Gonorrhea – an evolving disease of the new millennium

Stuart A. Hill, Thao L. Masters and Jenny Wachter

2016 | 10.15698/mic2016.09.524 | Full text | PDF | Abstract

Etiology, transmission and protection: Neisseria gonorrhoeae (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge. More severe sequellae include salpingitis and pelvic inflammatory disease which may lead to sterility and/or ectopic pregnancy. Occasionally, the organism can disseminate as a bloodstream infection. Epidemiology, incidence and prevalence: Gonorrhea is a global disease infecting approximately 60 million people annually. In the United States there are approximately 300, 000 cases each year, with an incidence of approximately 100 cases per 100,000 population. Treatment and curability: Gonorrhea is susceptible to an array of antibiotics. Antibiotic resistance is becoming a major problem and there are fears that the gonococcus will become the next “superbug” as the antibiotic arsenal diminishes. Currently, third generation extended-spectrum cephalosporins are being prescribed. Molecular mechanisms of infection: Gonococci elaborate numerous strategies to thwart the immune system. The organism engages in extensive phase (on/off switching) and antigenic variation of several surface antigens. The organism expresses IgA protease which cleaves mucosal antibody. The organism can become serum resistant due to its ability to sialylate lipooligosaccharide in conjunction with its ability to subvert complement activation. The gonococcus can survive within neutrophils as well as in several other lymphocytic cells. The organism manipulates the immune response such that no immune memory is generated which leads to a lack of protective immunity.

Hepatitis B virus and its sexually transmitted infection – an update

Takako Inoue and Yasuhito Tanaka

2016 | 10.15698/mic2016.09.527 | Full text | PDF | Abstract

Epidemiology, incidence and prevalence: About 5% of the world’s population has chronic hepatitis B virus (HBV) infection, and nearly 25% of carriers develop chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The prevalence of chronic HBV infection in human immunodeficiency virus (HIV)-infected individuals is 5%-15%; HIV/HBV coinfected individuals have a higher level of HBV replication, with higher rates of chronicity, reactivation, occult infection, and HCC than individuals with HBV only. The prevalence of HBV genotype A is significantly higher among men who have sex with men (MSM), compared with the rest of the population. Molecular mechanisms of infection, pathology, and symptomatology: HBV replication begins with entry into the hepatocyte. Sodium taurocholate cotransporting polypeptide was identified in 2012 as the entry receptor of HBV. Although chronic hepatitis B develops slowly, HIV/HBV coinfected individuals show more rapid progression to cirrhosis and HCC. Transmission and protection: The most common sources of HBV infection are body fluids. Hepatitis B (HB) vaccination is recommended for all children and adolescents, and all unvaccinated adults at risk for HBV infection (sexually active individuals such as MSM, individuals with occupational risk, and immunosuppressed individuals). Although HB vaccination can prevent clinical infections (hepatitis), it cannot prevent 100% of subclinical infections. Treatment and curability: The goal of treatment is reducing the risk of complications (cirrhosis and HCC). Pegylated interferon alfa and nucleos(t)ide analogues (NAs) are the current treatments for chronic HBV infection. NAs have improved the outcomes of patients with cirrhosis and HCC, and decreased the incidence of acute liver failure.

HPV disease transmission protection and control

Neil D. Christensen

2016 | 10.15698/mic2016.09.530 | Full text | PDF | Abstract

Human papillomaviruses (HPVs) represent a large collection of viral types associated with significant clinical disease of cutaneous and mucosal epithelium. HPV-associated cancers are found in anogenital and oral mucosa, and at various cutaneous sites. Papillomaviruses are highly species and tissue restricted, and these viruses display both mucosotropic, cutaneotropic or dual tropism for epithelial tissues. A subset of HPV types, predominantly mucosal, are also oncogenic and cancers with these HPV types account for more than 200,000 deaths world-wide. Host control of HPV infections requires both innate and adaptive immunity, but the viruses have developed strategies to escape immune detection. Viral proteins can disrupt both innate pathogen-sensing pathways and T-cell based recognition and subsequent destruction of infected tissues. Current treatments to manage HPV infections include mostly ablative strategies in which recurrences are common and only active disease is treated. Although much is known about the papillomavirus life cycle, viral protein functions, and immune responsiveness, we still lack knowledge in a number of key areas of PV biology including tissue tropism, site-specific cancer progression, codon usage profiles, and what are the best strategies to mount an effective immune response to the carcinogenic stages of PV disease. In this review, disease transmission, protection and control are discussed together with questions related to areas in PV biology that will continue to provide productive opportunities of discovery and to further our understanding of this diverse set of human viral pathogens.

Infinity war: Trichomonas vaginalis and interactions with host immune response

Giulia Bongiorni Galego and Tiana Tasca

2023 | 10.15698/mic2023.05.796 | Full text | PDF | Abstract

Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen’s interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5’-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.

Recent Insights into the HIV/AIDS Pandemic

Juan C. Becerra, Lukas S. Bildstein, Johannes S. Gach

2016 | 10.15698/mic2016.09.529 | Full text | PDF | Abstract

Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.

Syphilis: Re-emergence of an old foe

Lola V. Stamm

2016 | 10.15698/mic2016.09.523 | Full text | PDF | Abstract

Syphilis is caused by infection with Treponema pallidum subsp. pallidum, a not-yet-cultivable spiral-shaped bacterium that is usually transmitted by sexual contact with an infected partner or by an infected pregnant woman to her fetus. There is no vaccine to prevent syphilis. Diagnosis and treatment of infected individuals and their contacts is key to syphilis control programs that also include sex education and promotion of condom use to prevent infection. Untreated syphilis can progress through four stages: primary (chancre, regional lymphadenopathy), secondary (disseminated skin eruptions, generalized lymphadenopathy), latent (decreased re-occurrence of secondary stage manifestations, absence of symptoms), and tertiary (gummas, cardiovascular syphilis and late neurological symptoms). The primary and secondary stages are the most infectious. WHO estimates that each year 11 million new cases of syphilis occur globally among adults aged 15-49 years. Syphilis has re-emerged in several regions including North America, Western Europe, China and Australia. Host-associated factors that drive the re-emergence and spread of syphilis include high-risk sexual activity, migration and travel, and economic and social changes that limit access to health care. Early, uncomplicated syphilis is curable with a single intramuscular injection of benzathine penicillin G (BPG), the first line drug for all stages of syphilis.  Emergence of macrolide-resistant T. pallidum has essentially precluded the empirical use of azithromycin as a second-line drug for treatment of syphilis. Virulence attributes of T. pallidum are poorly understood. Genomic and proteomic studies have provided some new information concerning how this spirochete may evade host defense mechanisms to persist for long periods in the host.

Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide?

Camila Braz Menezes, Amanda Piccoli Frasson, Tiana Tasca

2016 | 10.15698/mic2016.09.526 | Full text | PDF | Abstract

Etiology: Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in the world. Transmission: Trichomoniasis is transmitted by sexual intercourse and transmission via fomites is rare. Epidemiology, incidence and prevalence: The WHO estimates an incidence of 276 million new cases each year and prevalence of 187 million of infected individuals. However, the infection is not notifiable. Pathology/Symptomatology: The T. vaginalis infection results in a variety of clinical manifestations – in most cases the patients are asymptomatic, but some may develop signs typically associated to the disease. Importantly, the main issue concerning trichomoniasis is its relationship with serious health consequences such as cancer, adverse pregnancy outcomes, infertility, and HIV acquisition. Molecular mechanisms of infection: To achieve success in parasitism trichomonads develop a complex process against the host cells that includes dependent- and independent-contact mechanisms. This multifactorial pathogenesis includes molecules such as soluble factors, secreted proteinases, adhesins, lipophosphoglycan that culminate in cytoadherence and cytotoxicity against the host cells. Treatment and curability: The treatment with metronidazole or tinidazole is recommended; however, cure failures remain problematic due to noncompliance, reinfection and/or lack of treatment of sexual partners, inaccurate diagnosis, or drug resistance. Therefore, new therapeutic alternatives are urgently needed. Protection: Strategies for protection including sexual behavior, condom usage, and therapy have not contributed to the decrease on disease prevalence, pointing to the need for innovative approaches. Vaccine development has been hampered by the lack of long-lasting humoral immunity associated to the absence of good animal models.

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.

Close