Current Issue:
Table of contents
Volume 12, Issue 1, pp. 1 - , 1
Cover: Paracoccidioides brasiliensis is one of the causal agents of South American blastomycosis (paracoccidioidomycosis), a fungal infection that can affect different tissues. The cover image presents a slant culture test tube containing Sabouraud dextrose agar growth medium, which was inoculated with Paracoccidioides brasiliensis and then incubated an unidentified amount of time, at a temperature of 37°C (image by William Kaplan at the Centers for Disease Control and Prevention, USA; image modified by MIC). The cover is published under the Creative Commons Attribution (CC BY) license.
Enlarge issue cover
It takes four to tango: the cooperative adventure of scientific publishing
Didac Carmona-Gutierrez, Katharina Kainz and Frank Madeo
Editorial |
page 34-36 | 10.15698/mic2025.02.843 | Full text | PDF |
Abstract
The publication and scientific implementation of scholarly articles is a collaborative effort that unites readers, authors, editors, and referees. A scientific journal thereby serves as a vital platform, enabling these interactions and fostering a shared commitment to advancing the quality and impact of scientific communication. In this short editorial, we celebrate the milestone of publishing the 500th article in Microbial Cell by highlighting these collective efforts. Importantly, from the outset of the journal more than ten years ago, we have cultivated a handcrafted organ that is produced by scientists for scientists. In that frame, we have followed and advocated a radical open access approach that fuels interaction and visibility of such cooperative endeavors for the public good.
Paving the way for new antimicrobial peptides through molecular de-extinction
Karen O. Osiro, Abel Gil-Ley, Fabiano C. Fernandes, Kamila B. S. de Oliveira, Cesar de la Fuente-Nunez, Octavio L. Franco
In a nutshell |
page 1-8 | 10.15698/mic2025.02.841 | Full text | PDF |
Abstract
Molecular de-extinction has emerged as a novel strategy for studying biological molecules throughout evolutionary history. Among the myriad possibilities offered by ancient genomes and proteomes, antimicrobial peptides (AMPs) stand out as particularly promising alternatives to traditional antibiotics. Various strategies, including software tools and advanced deep learning models, have been used to mine these host defense peptides. For example, computational analysis of disulfide bond patterns has led to the identification of six previously uncharacterized β-defensins in extinct and critically endangered species. Additionally, artificial intelligence and machine learning have been utilized to uncover ancient antibiotics, revealing numerous candidates, including mammuthusin, and elephasin, which display inhibitory effects toward pathogens in vitro and in vivo. These innovations promise to discover novel antibiotics and deepen our insight into evolutionary processes.
Integrative Omics reveals changes in the cellular landscape of peroxisome-deficient pex3 yeast cells
Tjasa Kosir, Hirak Das, Marc Pilegaard Pedersen, Ann-Kathrin Richard, Marco Anteghini, Vitor Martins dos Santos, Silke Oeljeklaus, Ida J. van der Klei and Bettina Warscheid
Research Articles |
page 9-33 | 10.15698/mic2025.02.842 | Full text | PDF |
Abstract
Peroxisomes are organelles that are crucial for cellular metabolism, but they also play important roles in non-metabolic processes such as signalling, stress response or antiviral defense. To uncover the consequences of peroxisome deficiency, we compared Saccharomyces cerevisiae wild-type with pex3 cells, which lack peroxisomes, employing quantitative proteomics and transcriptomics technologies. Cells were grown on acetate, a carbon source that requires peroxisomal enzymes of the glyoxylate cycle to generate energy and essential carbohydrates, and that does not repress the expression of peroxisomal genes. Our integrative omics analysis reveals that the absence of peroxisomes induces distinct responses at the level of the transcriptome and proteome. Transcripts of genes and corresponding proteins that are associated with peroxisomal β-oxidation were mostly increased in pex3 cells. In contrast, levels of peroxins were regulated at protein but not at transcript level. Membrane-bound peroxins were reduced, whereas the soluble receptors Pex5 and Pex7 were increased in abundance in pex3 cells. Interestingly, we found several non-peroxisomal transcript and proteins regulated in pex3 cells including mitochondrial proteins involved in respiration or import processes, which led to the identification of the mitochondrial pyruvate carrier Mpc1/3 as so far unnoticed transporter present in the peroxisomal membrane. Our results reveal the impact of the absence of peroxisomes in pex3 yeast cells and represent a rich resource of genes/proteins for follow-up studies to obtain a deeper understanding of peroxisome biology in a cellular context.