Current Issue:

Table of contents

Volume 9, Issue 6, pp. 126 - 135, June 2022

Issue cover
Cover: Colorized scanning electron micrograph of monkeypox virus (orange) on the surface of infected VERO E6 cells (green). The image was captured and color-enhanced at the National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility in Fort Detrick, Maryland (USA); image retrieved via Flickr and modified by MIC. The cover is published under the Creative Commons Attribution (CC BY) license. Enlarge issue cover

Research Reports

Investigating the role of G-quadruplexes at Saccharomyces cerevisiae telomeres

page 126-132 | 10.15698/mic2022.06.778 | Full text | PDF | Abstract

The G-quadruplex consensus motif G≥3NxG≥3NxG≥3NxG≥3 is found at telomeres of many species, ranging from yeast to plants to humans, but the biological significance of this fact remains largely unknown. In this study, we examine the in vivo relevance of telomeric G-quadruplexes in the budding yeast Saccharomyces cerevisiae by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant [(TG)0–4TGG]xATTTGG telomeric repeats instead of wild-type (TG)0-6TGGGTGTG(G)0-1 repeats to the distal ends of telomeres. The tlc1-tm telomere sequences lack the GGG motif present in every wild-type repeat and, therefore, are expected to be impaired in the formation of G-quadruplexes. Circular dichroism analysis of oligonucleotides consisting of tlc1-tm telomeric sequence is consistent with this hypothesis. We have previously shown that tlc1-tm cells grow similarly to wild-type cells, suggesting that the ability to form telomeric G-quadruplexes is not essential for telomere capping in S. cerevisiae cells.

Microreviews

Breaking the clip for cargo unloading from motor proteins: mechanism and significance

Keisuke Obara, Takumi Kamura

page 133-135 | 10.15698/mic2022.06.779 | Full text | PDF | Abstract

The mitochondrion is an essential organelle involved in ATP generation, lipid metabolism, regulation of calcium ions, etc. Therefore, it should be inherited properly by newly generated cells. In the budding yeast Saccharomyces cerevisiae, mitochondria are passed on to daughter cells by the motor protein, Myo2, on the actin cable. The mitochondria and Myo2 are connected via the adaptor protein Mmr1. After reaching daughter cells, mitochondria are released from the actin-myosin machinery and move dynamically. In our recent paper (Obara K et al. (2022), Nat Commun, doi:10.1038/s41467-022-29704-8), we demonstrated that the regulated proteolysis of Mmr1 is required for the unloading of mitochondria from Myo2 in daughter cells. Sequential post-translational modifications of Mmr1, i.e., phosphorylation followed by ubiquitination, are essential for Mmr1 degradation and mitochondrial release from Myo2. Defects in Mmr1 degradation cause stacking and deformation of mitochondria at the bud-tip and bud-neck, where Myo2 accumulates. Compared to wild-type cells, mutant cells with defects in Mmr1 degradation possess an elevated mitochondrial membrane potential and produce higher levels of reactive oxygen species (ROS), along with hypersensitivity to oxidative stress.

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.

Close