, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

August 2, 2015

A single mutation in the 15S rRNA gene confers non sense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

Ali Gargouri, Catherine Macadré and Jaga Lazowska

This article presents the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. A hypothetical mechanism of suppression by “ribosome shifting” is also discussed in view of the nature of mutations suppressed and not suppressed.

July 30, 2015

The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei

Hazel Xinyu Koh1,2, Htay Mon Aye1, Kevin S. W. Tan2 and Cynthia Y. He1

Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabilization. We measured drug concentrations that inhibit cell proliferation by 50% (IC50) for several compounds, chosen based on their lysosomotropic effects previously reported in Plasmodium falciparum. The lysosomal effects and cell death induced by L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) were further analyzed by flow cytometry and immunofluorescence analyses of different lysosomal markers…

July 6, 2015

In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor

Anne Silvestre1, 2, 3, 4, Aurélie Plaze1, 2, Patricia Berthon3, 4, Roman Thibeaux1, 2, Nancy Guillen1, 2 and Elisabeth Labruyère1, 2

Background: Entamoeba histolytica cell migration is essential for the development of human amoebiasis (an infectious disease characterized by tissue invasion and destruction). The tissue inflammation associated with tumour necrosis factor (TNF) secretion by host cells is a well-documented feature of amoebiasis. Tumour necrosis factor is a chemoattractant for E. histolytica, and the parasite may have a TNF receptor at its cell surface. Methods: confocal microscopy, RNA Sequencing, bioinformatics, RNA antisense techniques and histological analysis of human colon explants were used to characterize the interplay between TNF and E. histolytica. Results: an antibody against human TNF receptor 1 (TNFR1) stained the E. histolytica trophozoite…

June 25, 2015

Human Thyroid Cancer-1 (TC-1) is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

Natalie K. Jones1,2,4,#, Nagla T.T. Arab1,3,#, Rawan Eid1,3,#, Nada Gharib1,5, Sara Sheibani1,2,6, Hojatollah Vali2, Chamel Khoury1, Alistair Murray1,2, Eric Boucher2, Craig A. Mandato2, Paul G. Young3 and Michael T. Greenwood1

The human Thyroid Cancer-1 (hTC-1) protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. This article reports that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. In sum, the results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

May 20, 2015

Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome

R. Roshini Beenukumar1,#, Daniela Gödderz1,2,#, R. Palanimurugan1,3, and R. Jürgen Dohmen1

Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC monomers and targets them to the proteasome. Here, we report that polyamines, aside from their role in the control of OAZ synthesis and stability, directly enhance OAZ-mediated ODC degradation by the proteasome. Using a stable mutant of OAZ, we show that polyamines promote ODC degradation in Saccharomyces cerevisiae cells even when OAZ levels are not changed. Furthermore, polyamines stimulated the in vitro degradation of ODC by the…

May 4, 2015

Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly

Kristin Graumann1,3,#, Frieder Schaumburg1,4,#, Thomas F. Reubold2, Diana Hippe1, Susanne Eschenburg2 and Carsten G. K. Lüder1

Inhibition of programmed cell death pathways of mammalian cells often facilitates the sustained survival of intracellular microorganisms. The apicomplexan parasite Toxoplasma gondii is a master regulator of host cell apoptotic pathways. Here, we have characterized a novel anti-apoptotic activity of T. gondii. Using a cell-free cytosolic extract model, we show that T. gondii interferes with the activities of caspase 9 and caspase 3/7 which have been induced by exogenous cytochrome c and dATP. Proteolytic cleavage of caspases 9 and 3 is also diminished suggesting inhibition of holo-apoptosome function. Parasite infection of Jurkat T cells and subsequent triggering of apoptosome formation by exogenous cytochrome c in vitro and in vivo indicated that…

May 1, 2015

Exogenous folates stimulate growth and budding of Candida glabrata

Afsaneh Porzoor and Ian G. Macreadie

Folate, vitamin B9, is well recognized as being essential for cell growth. The utilization of folate is common to all cells, but the source of it may be quite different. This article reports a novel response of yeast to folates that may increase the utility of yeast as a model to study folate transport and signaling.

April 6, 2015

Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

Camilla Ceccatelli Berti1, Cristina Dallabona1, Mirca Lazzaretti1, Sabrina Dusi2, Elena Tosi1, Valeria Tiranti2, Paola Goffrini1

Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA), namely PKAN and CoPAN. Yeast expressing a pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.

Previous Next
, June 20, 2016

Antibiotic use in childhood alters the gut microbiota and predisposes to overweight

Katri Korpela and Willem M de Vos

This article comments on work published by Korpela et al. (Nat Commun, 2016), which investigates the correlation between the use of antibiotics in early life and the excessive weight gain in later childhood.

, June 20, 2016

Evidence for the hallmarks of human aging in replicatively aging yeast

Georges E. Janssens, Liesbeth M. Veenhoff

Recently, efforts have been made to characterize the hallmarks that accompany and contribute to the phenomenon of aging, as most relevant for humans. Remarkably, studying the finite lifespan of the single cell eukaryote budding yeast has been paramount for our understanding of aging. Here, we compile observations from literature over the past decades of research on replicatively aging yeast to highlight how the hallmarks of aging in humans are present in yeast.

, May 10, 2016

Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications

Sandro Roier, Franz G. Zingl, Fatih Cakar, and Stefan Schild

This article comments on work published by Roier et al. (Nat Commun, 2016), which proposes a novel and highly conserved bacterial outer membane vesicle biogenesis mechanism based on phospholipid accumulation in the outer leaflet of the outer membrane.

, April 16, 2016

A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance

Mehdi Kabbage1, Ryan Kessens1 and Martin B. Dickman2

This article comments on work published by Li et al. (Plant Cell, 2016), which focuses on the role of Bcl-2-associated athanogene 6 (BAG6) in plant innate immunity, showing that BAG6 plays a key role in basal plant defense against fungal pathogens.

, April 14, 2016

The molecular and cellular action properties of artemisinins: what has yeast told us?

Chen Sun and Bing Zhou

Artemisinin (ART) or Qinghaosu is a natural compound possessing superior anti-malarial activity. Although intensive studies have been done in the medicinal chemistry field to understand the structure-effect relationship, the biological actions of artemisinin are poorly understood and controversial. This review summarizes what we have learned from yeast about the basic biological properties of ARTs, as well as some key unanswered questions.

, April 14, 2016

Metabolic network structure and function in bacteria goes beyond conserved enzyme components

Jannell V. Bazurto# and Diana M. Downs

This article comments on work published by Bazurto et al. (MBio, 2016), which demonstrated that conservation of metabolic components was not sufficient to predict network structure and function Escherichia coli.

, April 5, 2016

Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

Jigang Wang1,2,# and Qingsong Lin2

This article comments on work published by Wang et al. (Nat Commun, 2014), which provides insights into the mode-of-action of artemisinin and its specificity against malaria parasites.

, April 5, 2016

Translational repression in malaria sporozoites

Oliver Turque1, Tiffany Tsao1, Thomas Li1 and Min Zhang1,2

This article comments on work published by Zhang et al. (PLoS Pathog, 2016), which summarizea recent advances in the translational repression of gene expression in the malaria sporozoite.

, April 4, 2016

Chromatin binding and silencing: Two roles of the same protein Lem2

Ramón Ramos Barrales and Sigurd Braun

This article comments on work published by Barrales et al. (Genes Dev, 2016), which identifies the nuclear envelope protein Lem2, a homolog of metazoan lamin-associated proteins (LAPs), as a relevant factor for heterochromatin silencing and perinuclear localization in the fission yeast Schizosaccharomyces pombe.

Previous Next
, March 17, 2017

Staphylococcus aureus type I signal peptidase: essential or not essential, that’s the question

Wouter L.W. Hazenbos1, Elizabeth Skippington2 and Man-Wah Tan1

This article comments on work published by Morisaki et al. (mBio, 2016), which characterized a novel ABC transporter. This transporter apparently compensates for SpsB’s essential function by mediating alternative cleavage of a subset of proteins at a site distinct from the SpsB-cleavage site, leading to SpsB-independent secretion.

, March 1, 2017

Transceptors as a functional link of transporters and receptors

George Diallinas

A relative newcomer in environment sensing are the so called transceptors, membrane proteins that possess both solute transport and receptor-like signaling activities. Now, the transceptor concept is further enlarged to include micronutrient sensing via the iron and zinc high-affinity transporters of Saccharomyces cerevisiae.

, February 3, 2017

S. pombe placed on the prion map

Jacqueline Hayles

This article comments on work published by Sideri et al. (Microbial Cell, 2017), which identified the Ctr4 prion in S. pombe.

December 30, 2016

Using microbes as a key tool to unravel the mechanism of autophagy and the functions of the ATG proteins

Mario Mauthe1,2 and Fulvio Reggiori1,2

Microbes have served to discover and characterize unconventional functions of the ATG proteins, which are uncoupled from their role in autophagy. In our recent study, we have taken advantage of viruses as a screening tool to determine the extent of the unconventional functions of the ATG proteome and characterize one of them.

, December 5, 2016

Autophagy: one more Nobel Prize for yeast

Andreas Zimmermann1, Katharina Kainz1, Aleksandra Andryushkova1, Sebastian Hofer1, Frank Madeo1,2 and Didac Carmona-Gutierrez1

The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumifor the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

, November 25, 2016

Physiology, phylogeny, and LUCA

William F. Martin1,2, Madeline C. Weiss1, Sinje Neukirchen3, Shijulal Nelson-Sathi4, Filipa L. Sousa3

Genomes record their own history. But if we want to look all the way back to life’s beginnings some 4 billion years ago, the record of microbial evolution that is preserved in prokaryotic genomes is not easy to read. The classical approach has been to look for genes that are universally distributed. Another approach is to make all trees for all genes, and sift out the trees where signals have been overwritten by lateral gene transfer. What is left ought to be ancient. If we do that, what do we find?

, September 30, 2016

The curious case of vanishing mitochondria

Anna Karnkowska1 and Vladimír Hampl2

Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs). Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized – Monocercomonoides sp. The discovery of such bona fide amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution.

, September 23, 2016

Accumulation of metabolic side products might favor the production of ethanol in Pho13 knockout strains

Guido T. Bommer, Francesca Baldin & Emile Van Schaftingen

This article comments on work published by Collard et al. (Nat Chem Biol, 2016), which describes the discovery of a striking example illustrating the metabolite repair concept.

, September 4, 2016

Sexually transmitted infections: old foes on the rise

Didac Carmona-Gutierrez1,*, Katharina Kainz1 and Frank Madeo1,2,*

Sexually transmitted infections (STIs) are commonly spread via sexual contact. It is estimated that one million STIs are acquired every day worldwide. Besides their impact on sexual, reproductive and neonatal health, they can cause disastrous and life-threatening complications if left untreated. In addition to this personal burden, STIs also represent a socioeconomic problem, deriving in treatment costs of tremendous proportions. Despite a substantial progress in diagnosis, treatment and prevention, the incidence of many common STIs is increasing, and STIs continue to represent a global public health problem and a major cause for morbidity and mortality. With this Special Issue, Microbial Cell provides an in-depth overview of the eight major STIs, covering all relevant features of each infection.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.