, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

January 4, 2015

Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites

Carine F. Djuika1, Jaime Huerta-Cepas2, Jude M. Przyborski3, Sophia Deil1, Cecilia P. Sanchez1, Tobias Doerks2, Peer Bork2, Michael Lanzer1 and Marcel Deponte1

Horizontal gene transfer has emerged as a crucial driving force for the evolution of eukaryotes. This also includes Plasmodium falciparum and related economically and clinically relevant apicomplexan parasites, whose rather small genomes have been shaped not only by natural selection in different host populations but also by horizontal gene transfer following endosymbiosis. However, there is rather little reliable data on horizontal gene transfer between animal hosts or bacteria and apicomplexan parasites. Here we show that apicomplexan homologues of peroxiredoxin 5 (Prx5) have a prokaryotic ancestry and therefore represent a special subclass of Prx5 isoforms in eukaryotes. Using two different immunobiochemical approaches, we found that…

January 1, 2015

Two distinct and competitive pathways confer the cellcidal actions of artemisinins

Chen Sun#, Jian Li#, Yu Cao, Gongbo Long and Bing Zhou

The biological actions of artemisinin (ART), an antimalarial drug derived from Artemisia annua, remain poorly understood and controversial. This article concludes that ARTs are endowed with two major and distinct types of properties: a potent and specific mitochondria-dependent reaction and a more general and less specific heme-mediated reaction. The competitive nature of these two actions could be explained by their shared source of the consumable ARTs, so that inhibition of the heme-mediated degradation pathway would enable more ARTs to be available for the mitochondrial action. These properties of ARTs can be used to interpret the divergent antimalarial and anticancer actions of ARTs.

, November 29, 2014

Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling

Viktor Scheidt1,#, André Jüdes1,#, Christian Bär1,2,#, Roland Klassen1 and Raffael Schaffrath1

The herein presented data suggest that proper TOR signaling requires intact tRNA modifications and that loss of U34 modifications impinges on the TOR-sensitive NCR branch via Gln3 misregulation.

, November 26, 2014

Measurement of apoptosis by SCAN©, a system for counting and analysis of fluorescently labelled nuclei

Neta Shlezinger1,#, Elad Eizner1,2,#, Stas Dubinchik2, Anna Minz-Dub1, Rachel Tetroashvili1, Adi Reider1, Amir Sharon1

This work reports on a system for analyses of apoptosis-like programmed cell death in fungal hyphae that is composed of several modules, which enable automatic quantification of nuclei with chromatin condensation and DNA strand break in large datasets according to nuclei-associated fluorescent markers.

, November 18, 2014

Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan

Ivan Orlandi1,2, Damiano Pellegrino Coppola2 and Marina Vai1,2

This work shows that MPC1-deficient cells make up for their impairment in mitochondrial pyruvate with a metabolic rewiring which involves several intermediates of the mitochondrially localized TCA cycle and the cytosolic glyoxylate shunt but ultimately results in a pro-aging process.

, October 31, 2014

Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

Marizela Delic1,2, Alexandra B. Graf2,3, Gunda Koellensperger1,4, Christina Haberhauer-Troyer1,4, Stephan Hann1,4, Diethard Mattanovich1,2, Brigitte Gasser1,2

This article investigates the role of Yap1 during the production of recombinant secretory proteins in glucose based growth conditions in Pichia pastoris, and reports a novel role of Yap1 during ER-resident oxidative protein folding.

, October 29, 2014

Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

María López-Malo1,2, Estéfani García-Ríos1, Rosana Chiva1 and José Manuel Guillamon1

This study confirms the importance of specific genes in growth and fermentation activity of Saccharomyces cerevisiae at low temperature.

, October 24, 2014

Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin

Pieter Spincemaille1,+, Gursimran Chandhok2,+, Andree Zibert2, Hartmut Schmidt2, Jef Verbeek3, Patrick Chaltin4,5, Bruno P.A. Cammue1,6,#, David Cassiman3, Karin Thevissen1,#

This study reports the identification of the drug class of Angiotensin II Type 1 receptor blockers (ARBs) and shows that specific ARBs increase yeast tolerance to Cu and Cp, and affect markers of Cu-induced apoptosis. Likewise, this study finds that specific ARBs increase human cell line tolerance to Cu and decrease the prevalence of apoptotic markers.

, October 1, 2014

An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids

Harriet Allison1, Amanda J. O’Reilly1, Jeremy Sternberg2 and Mark C. Field1

This work describes a novel family of type I membrane proteins (“invariant glycoproteins”) and proposes them as trypanosomatid-specific ER-localised glycoproteins, with potential contributions to life cycle progression and immunity, that utilise oligomerisation as an ER retention mechanism.

Previous Next
, January 7, 2019

Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes

Hannah L Klein1, Kenny K.H. Ang2, Michelle R. Arkin2, Emily C. Beckwitt3,4, Yi-Hsuan Chang5, Jun Fan6, Youngho Kwon7,8, Michael J. Morten1, Sucheta Mukherjee9, Oliver J. Pambos6, Hafez el Sayyed6, Elizabeth S. Thrall10, João P. Vieira-da-Rocha9, Quan Wang11, Shuang Wang12,13, Hsin-Yi Yeh5, Julie S. Biteen14, Peter Chi5,15, Wolf-Dietrich Heyer9,16, Achillefs N. Kapanidis6, Joseph J. Loparo10, Terence R. Strick12,13,17, Patrick Sung7,8, Bennett Van Houten3,18,19, Hengyao Niu11 and Eli Rothenberg1

Mechanistic assays of DNA repair processes are a powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

, December 19, 2018

Imbalance in gut microbes from babies born to obese mothers increases gut permeability and myeloid cell adaptations that provoke obesity and NAFLD

Taylor K. Soderborg1 and Jacob E. Friedman1,2,3

This article comments on work published by Soderborg et al. (Nat Commun, 2018), which demonstrates a causative role of early life microbiome dysbiosis in infants born to mothers with obesity in novel pathways that promote developmental programming of NAFLD.

, November 19, 2018

Retroviral integration site selection: a running Gag?

Paul Lesbats1,2,3 and Vincent Parissi1,2,3

In this article, the authors comment on the study “Structural basis for spumavirus GAG tethering to chromatin” by Lesbats et al. (Proc Natl Acad Sci, 2018) that revealed that the Gag protein of the spumaretrovirus prototype foamy virus (PFV) directly interacts with the nucleosome acidic patch, acting as a chromatin tether, and its disruption leads to delocalization of viral particles and integration sites, shedding light on the importance of retroviral structural proteins in the selection of integration sites.

, November 12, 2018

Insights into the host-pathogen interaction: C. albicans manipulation of macrophage pyroptosis

Teresa R. O’Meara1 and Leah E. Cowen1

In this article, the authors comment on the study “High-Throughput Screening Identifies Genes Required for Candida albicans Induction of Macrophage Pyroptosis” by O’Meara et al. (MBio, 2018) that provides a comprehensive analysis of the genetic circuitry in both Candida albicans and host macrophages that leads to pyroptosis, revealing the impact of altered pyroptosis on infection, the role of pyroptosis in facilitating neutrophil accumulation at the site of C. albicans infection, and the decoupling of inflammasome priming and activation in the response to C. albicans infection, thus shedding new light on the factors governing the outcomes of this interaction.

, October 31, 2018

A comparative approach to decipher intestinal animal-microbe associations

Keisuke Nakashima1

In this article, the authors comment on the study “Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota” by Nakashima et al. (Nat Commun, 2018) that used comparative analyses of chordates to investigate the development of animal-microbe associations, suggesting that microbial colonization of the mucus layer over mammalian gastrointestinal epithelium was established upon the loss of ancestral chitin-based barrier immunity, providing insights into the establishment of these associations in an evolutionary context.

, October 18, 2018

Pathways of host cell exit by intracellular pathogens

Antje Flieger1,#, Freddy Frischknecht2, Georg Häcker3, Mathias W. Hornef4, Gabriele Pradel5

This review provides an overview of the diverse host cell exit strategies employed by intracellular-living bacterial, fungal, and protozoan pathogens, highlighting the commonalities and system-specific variations of these strategies, and discussing potential microbial molecules involved in host cell exit as targets for future intervention approaches.

, September 29, 2018

Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae

Paola Coccetti1,2, Raffaele Nicastro1,3 and Farida Tripodi1,2

This review consolidates current knowledge on the conventional and non-conventional functions of the effector kinase Snf1 in yeast, shedding light on its diverse roles in cellular physiology and energy homeostasis.

, September 28, 2018

An unexpected benefit from E. coli: how enterobactin benefits host health

Aileen K. Sewell1,2, Min Han1,2 and Bin Qi1,2

In this article, the authors comment on the study “Microbial Siderophore Enterobactin Promotes Mitochondrial Iron Uptake and Development of the Host via Interaction with ATP Synthase” by Qi et al. (Cell, 2018) that uncovered a surprising role for the Escherichia coli-produced siderophore enterobactin (Ent) in facilitating iron uptake by the host, marking a major shift in the understanding of its function and indicating potential new benefits from commensal bacteria in aiding the host’s iron homeostasis.

, September 19, 2018

Protective roles of ginseng against bacterial infection

Ye-Ram Kim1 and Chul-Su Yang1

This review highlights the antibacterial effects of ginseng against pathogenic bacterial infections, discussing its regulation of pathogenic factors and proposing the therapeutic potential of ginseng as a natural antibacterial drug to address antibiotic resistance and toxicity in the context of global public health challenges.

Previous Next
, August 1, 2016

Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation.

Saul M. Honigberg

Diploid budding yeast (Saccharomyces cerevisiae) can adopt one of several alternative differentiation fates in response to nutrient limitation, and each of these fates provides distinct biological functions. When different strain backgrounds are taken into account, these various fates occur in response to similar environmental cues, are regulated by the same signal transduction pathways, and share many of the same master regulators. I propose that the relationships between fate choice, environmental cues and signaling pathways are not Boolean, but involve graded levels of signals, pathway activation and master-regulator activity.

, May 1, 2016

Phosphatidylthreonine: An exclusive phospholipid regulating calcium homeostasis and virulence in a parasitic protist

Ruben D. Arroyo-Olarte and Nishith Gupta

This article comments on work published by Kuchipudi et al. (Microbial Cell, 2016), which describes the role of phohsphatidylthreonine in the regulation of calcium homeostasis and virulence in the protozoan parasite Toxoplasma gondii.

, April 13, 2016

Non-genetic impact factors on chronological lifespan and stress resistance of baker’s yeast

Michael Sauer and Diethard Mattanovich

This article comments on work published by Bisschops et al. (Microbial Cell, 2015), which illustrates how important the choice of the experimental setup is and how culture conditions influcence cellular aging and survival in biotechnological processes.

, April 4, 2016

What’s old is new again: yeast mutant screens in the era of pooled segregant analysis by genome sequencing

Chris Curtin and Toni Cordente

This article comments on work published by Den Abt et al. (Microbial Cell, 2016), which identified genes involved in ethyl acetate formation in a yeast mutant screen based on a new approach combining repeated rounds of chemical mutagenesis and pooled segregant analysis by whole genome sequencing.

, March 17, 2016

The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract

Eduardo Lopez-Medina1 and Andrew Y. Koh2

This article comments on work published by Lopez-Medina et al. (PLoS Pathog, 2015) and Fan et al. (Nat Med, 2015), which utilize an “artificial” niche, the antibiotic-treated gut with concomitant pathogenic microbe expansion, to gain insight in bacterial-fungal interactions in clinically common scenarios.

, March 6, 2016

Gearing up for survival – HSP-containing granules accumulate in quiescent cells and promote survival

Ruofan Yu and Weiwei Dang

This article comments on work published by Lee et al. (Microbial Cell, 2016), which reports that distinct granules are formed in quiescent and non-quiescent cells, which determines their respective cell fates.

, March 3, 2016

Yeast screening platform identifies FDA-approved drugs that reduce Aβ oligomerization

Triana Amen1,2 and Daniel Kaganovich1

This article comments on work published by Park et al. (Microbial Cell, 2016), which discovered a number of small molecules capable of modulating Aβ aggregation in a yeast model.

November 26, 2015

Groupthink: chromosomal clustering during transcriptional memory

Kevin A. Morano

In this article, the authors comment on the study “NO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering.” by Brickner et al. (Microbial Cell, 2015), discussing the importance and molecular mechanisms of chromosomal clustering during transcriptional memory.

November 26, 2015

Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration

Amit Shrestha1, 2 and Lynn A. Megeney1, 2, 3

Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. This article discusses the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.