, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 7, 2018

Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor

Damien J. Cabral1, Swathi Penumutchu1, Colby Norris1,2, Jose Ruben Morones-Ramirez3,4 and Peter Belenky1

Localized and systemic fungal infections caused by Candida albicans can lead to significant mortality and morbidity. Here, Cabral et al. show that E. coli produces a soluble factor that kills C. albicans in a magnesium-dependent fashion such that depletion of available magnesium is essential for toxicity.

, February 19, 2018

Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK

Nazif Maqani1,#, Ryan D. Fine1,#, Mehreen Shahid1, Mingguang Li1,2, Elisa Enriquez-Hesles1 and Jeffrey S. Smith1

Chronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Here, Magani et al. identified specific downstream SNF1 targets responsible for CLS extension during CR.

, February 18, 2018

Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells

Maxence de Taffin de Tilques1,$, Jean-Paul Lasserre1,$, François Godard1, Elodie Sardin1, Marine Bouhier1, Marina Le Guedard2,3, Roza Kucharczyk4, Patrice X. Petit5, Eric Testet2, Jean-Paul di Rago1, Déborah Tribouillard-Tanvier1,#

Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). Here, de Taffin de Tilques et al. describe that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of Barth Syndrome (BTHS) and identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.

, February 12, 2018

Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces

Dino van Dissel1, Joost Willemse1, Boris Zacchetti1, Dennis Claessen1, Gerald B. Pier2, Gilles P. van Wezel1

In this article van Dissel et al. describe new insights to allow better control of liquid-culture morphology of streptomycetes, which may be harnessed to improve growth and industrial exploitation of these highly versatile natural product and enzyme producers.

, January 30, 2018

Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging

Nadia G Rampello1, Maria Stenger2, Benedikt Westermann2, Heinz D Osiewacz1

In aerobic organisms, mitochondrial F1Fo-ATP-synthase is the major site of ATP production. Here, Rampello et al. report on the role of the two dimer assembly factors PaATPE and PaATPG of the aging model Podospora anserina validating a model that links mitochondrial membrane remodeling to aging and identify specific molecular components triggering this process.

, January 26, 2018

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

Esther Gamero-Sandemetrio1, Lucía Payá-Tormo1, Rocío Gómez-Pastor1,3, Agustín Aranda1,2 and Emilia Matallana1,2

Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. Here, Gamero-Sandemetrio et al. present findings that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after active dry yeast (ADY) production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

, January 16, 2018

Molecular signature of the imprintosome complex at the mating-type locus in fission yeast

Célia Raimondi1, Bernd Jagla2, Caroline Proux3, Hervé Waxin4, Serge Gangloff1, Benoit Arcangioli1

Genetic and molecular studies have indicated that an epigenetic imprint at mat1, the sexual locus of fission yeast, initiates mating type switching. Here, Raimondi et al. characterized the recruitment of early players of mating type switching at the mat1 region and suggest a nucleoprotein protective structure defined as imprintosome.

, January 14, 2018

Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β

Mary-Anne Hartley1,¶, Remzi O. Eren1,¶, Matteo Rossi1, Florence Prevel1, Patrik Castiglioni1, Nathalie Isorce1, Chantal Desponds1, Lon-Fye Lye2, Stephen M. Beverley2, Stefan K. Drexler1,&, Nicolas Fasel1,&

The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses mediated by Toll-Like-Receptor-3 (TLR3). Here, Hartely et al. investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. They postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.

, January 13, 2018

A novel system to monitor mitochondrial translation in yeast

Tamara Suhm1, Lukas Habernig2, Magdalena Rzepka1, Jayasankar Mohanakrishnan Kaimal3, Claes Andréasson3, Sabrina Büttner2,3 and Martin Ott1

In this study Suhm et al. present a novel system to monitor mitochondrial translation by detection of mitochondrial GFP-translation through fluorescence microscopy and flow cytometry in functional mitochondria. This novel tool allows the investigation of the function and regulation of mitochondrial translation during stress signaling, aging and mitochondrial biogenesis.

Previous Next
, December 3, 2020

Maintaining phagosome integrity during fungal infection: do or die?

Mabel Yang1, Glenn F.W. Walpole1,2 and Johannes Westman1

This article refers to the paper “Lysosome Fusion Maintains Phagosome Integrity during Fungal Infection” by Westman et al. (Cell Host Microbe, 2020), which shows that macrophages respond to pathogen growth by expanding the phagosome membrane through a calcium-dependent mechanism involving lysosome insertion, maintaining membrane integrity and preventing rupture.

, November 27, 2020

Milestones in Bacillus subtilis sporulation research

Eammon P. Riley1, Corinna Schwarz2, Alan I. Derman2 and Javier Lopez-Garrido2

In this review, the foundational discoveries that shaped the sporulation field are discussed, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years.

, October 8, 2020

A novel antibacterial strategy: histone and antimicrobial peptide synergy

Leora Duong1, Steven P. Gross2,3 and Albert Siryaporn1,3

This article refers to the study “Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization” by Doolin et al. (Nat Comm, 2020) that shows that histones enhance the antimicrobial activity of peptides, disrupt bacterial membranes, and inhibit transcription, offering new insights into natural antimicrobial mechanisms.

, October 5, 2020

Extracellular vesicles: An emerging platform in gram-positive bacteria

Swagata Bose1,#, Shifu Aggarwal1,#, Durg Vijai Singh1,2 and Narottam Acharya1

Extracellular vesicles (EVs) are secreted by both pathogenic and non-pathogenic bacteria to transfer biomolecules and facilitate intercellular communication. While EV secretion in gram-negative bacteria is well understood, less is known about gram-positive bacteria. This review explores the role of EVs involved in bacterial competition, survival, immune evasion, and infection of gram-positive bacteria and compares them to gram-negative counterparts.

, September 21, 2020

Structural insights into the architecture and assembly of eukaryotic flagella

Narcis-Adrian Petriman1 and Esben Lorentzen1

Cilia and flagella are key structures in motility and signaling. This review highlights recent findings of cryo-EM studies that have mapped the structure of axonemal microtubules in Chlamydomonas reinhardtii, revealing over 30 associated proteins as well as recent researcht which focused on the trafficking complexes that transport components between the cell body and cilium.

, September 16, 2020

Erythrocyte phospho-signalling is dynamically altered during infection with Plasmodium falciparum

Jack D. Adderley1 and Christian Doerig1

This article refers to the study “Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention” by Adderley et al. (Nat Commun, 2020) that investigates how Plasmodium falciparum malaria parasites influence red blood cells. By tracking hanges in over 800 human proteins at different parasite stages they confirmed activation of the PAK-MEK pathway and discovered significant changes, particularly during the trophozoite stage. This suggests that kinases activated by the infection could be targeted for new antimalarial therapies.

, July 9, 2020

Plant and fungal products that extend lifespan in Caenorhabditis elegans

Jan Martel1,2, Cheng-Yeu Wu1-3, Hsin-Hsin Peng1,2,4, Yun-Fei Ko2,5,6, Hung-Chi Yang7, John D. Young5 and David M. Ojcius1,2,8

Caenorhabditis elegans’ lifespan is extended by plant and fungal extracts activating pathways like autophagy and mitochondrial biogenesis. Low to moderate concentrations promote longevity, while high doses are harmful. This review explores the health benefits of these substances in humans.

, June 17, 2020

A new role for proteins subunits of RNase P: stabilization of the telomerase holoenzyme

P. Daniela Garcia1 and Virginia A. Zakian2

This article refers to the study “Stability and Nuclear Localization of Yeast Telomerase Depend on Protein Components of RNase P/MRP”, by Garcia et al. (Nat Commun, 2020), showing that 3 essential proteins in Saccharomyces cerevisiae are vital for telomerase assembly and nuclear localization. In their mutants, telomerase is less mature, and telomeres are shorter. TLC1 is properly folded but remains in the cytoplasm, rather than moving to the nucleus, where it maintains telomeres.

, June 16, 2020

Lipid droplet biogenesis from specialized ER subdomains

Vineet Choudhary1 and Roger Schneiter2

This article refers to the paper “Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis” by Choudhary et al. (J Cell Biol, 2020), which deals with the formation of lipid droplets (LDs) at specific ER sites marked by the proteins Fld1 and Nem1. These proteins recruit enzymes such as Lro1 and Dga1 to initiate fat storage. Together, Fld1 and Nem1 define where LDs form by organising key proteins and lipids needed for their biogenesis.

Previous Next
, February 21, 2025

It takes four to tango: the cooperative adventure of scientific publishing

Didac Carmona-Gutierrez1,2, Katharina Kainz1 and Frank Madeo1-3

This Editorial is the 500th article published in Microbial Cell, a journey that started in 2014 and has seen the journal grow steadily and maintain itself as a respected community platform. The foundation that has allowed for and driven this development – as for any responsible journal – is composed of four essential pillars: the readers, the authors, the editors and the referees.

, August 20, 2024
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Eun-Gyu No, Heidi M Blank and Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.

, June 1, 2023

Ribose 5-phosphate: the key metabolite bridging the metabolisms of nucleotides and amino acids during stringent response in Escherichia coli?

Paulina Katarzyna Grucela1, Tobias Fuhrer2, Uwe Sauer2, Yanjie Chao3 and Yong Everett Zhang1

Here we propose the metabolite ribose 5’-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.

August 24, 2022

Flagellated bacterial porter for in situ tumor vaccine

Haiheng Xu1, Yiqiao Hu1, 2 and Jinhui Wu1, 2, 3

Cancer immunotherapy, which use the own immune system to attack tumors, are increasingly popular treatments. But, due to the tumor immunosuppressive microenvironment, the antigen presentation in the tumor is limited. Recently, a growing number of people use bacteria to stimulate the body’s immunity for tumor treatment due to bacteria themselves have a variety of elements that activate Toll-like receptors. Here, we discuss the use of motility of flagellate bacteria to transport antigens to the tumor periphery to activate peritumoral dendritic cells to enhance the effect of in situ tumor vaccines.

August 1, 2022

The rise of Candida auris: from unique traits to co-infection potential

Nadine B. Egger1,§, Katharina Kainz1,§, Adina Schulze1, Maria A. Bauer1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

Candida auris is a multidrug resistant (MDR) fungal pathogen with a crude mortality rate of 30-60%. First identified in 2009, C. auris has been rapidly rising to become a global risk in clinical settings and was declared an urgent health threat by the Centers for Disease Control and Prevention (CDC). A concerted global action is thus needed to successfully tackle the challenges created by this emerging fungal pathogen. In this brief article, we underline the importance of unique virulence traits, including its easy transformation, its persistence outside the host and its resilience against multiple cellular stresses, as well as of environmental factors that have mainly contributed to the rise of this superbug.

April 4, 2022

A hundred spotlights on microbiology: how microorganisms shape our lives

Didac Carmona-Gutierrez1, Katharina Kainz1, Andreas Zimmermann1, Sebastian J. Hofer1, Maria A. Bauer1, Christoph Ruckenstuhl1, Guido Kroemer2-4 and Frank Madeo1,5,6

Viral, bacterial, fungal and protozoal biology is of cardinal importance for the evolutionary history of life, ecology, biotechnology and infectious diseases. Various microbiological model systems have fundamentally contributed to the understanding of molecular and cellular processes, including the cell cycle, cell death, mitochondrial biogenesis, vesicular fusion and autophagy, among many others. Microbial interactions within the environment have profound effects on many fields of biology, from ecological diversity to the highly complex and multifaceted impact of the microbiome on human health. Also, biotechnological innovation and corresponding industrial operations strongly depend on microbial engineering. With this wide range of impact in mind, the peer-reviewed (…)

March 21, 2022

Yeast goes viral: probing SARS-CoV-2 biology using S. cerevisiae

Brandon Ho1, Raphael Loll-Krippleber1 and Grant W. Brown1

The budding yeast Saccharomyces cerevisiae has long been an outstanding platform for understanding the biology of eukaryotic cells. Robust genetics, cell biology, molecular biology, and biochemistry complement deep and detailed genome annotation, a multitude of genome-scale strain collections for functional genomics, and substantial gene conservation with Metazoa to comprise a powerful model for modern biological research. Recently, the yeast model has demonstrated its utility in a perhaps unexpected area, that of eukaryotic virology. Here we discuss three innovative applications of the yeast model system to reveal functions and investigate variants of proteins encoded by the SARS-CoV-2 virus.

, December 6, 2021

Murals meet microbes: at the crossroads of microbiology and cultural heritage

Maria A. Bauer1, Katharina Kainz1, Christoph Ruckenstuhl1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

This article comments on the duality of microorganisms in the conservation and restoration of cultural heritage, which encompasses the negative impact of damaging microorganisms and recent advances in using specific microorganisms and microbial-based technologies for cultural heritage preservation.

, September 21, 2021

Urm1, not quite a ubiquitin-like modifier?

Lars Kaduhr1, Cindy Brachmann1, Keerthiraju Ethiraju Ravichandran2,3, James D. West4, Sebastian Glatt2 and Raffael Schaffrath1

This article comments on work published by Brachmann et al. (Redox Biol, 2020), which studied urmylation of the yeast 2-Cys peroxiredoxin Ahp1, uncovering that promiscuous lysine target sites and specific redox requirements determine the Urm1 acceptor activity of the peroxiredoxin.

Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.