, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 7, 2018

Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor

Damien J. Cabral1, Swathi Penumutchu1, Colby Norris1,2, Jose Ruben Morones-Ramirez3,4 and Peter Belenky1

Localized and systemic fungal infections caused by Candida albicans can lead to significant mortality and morbidity. Here, Cabral et al. show that E. coli produces a soluble factor that kills C. albicans in a magnesium-dependent fashion such that depletion of available magnesium is essential for toxicity.

, February 19, 2018

Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK

Nazif Maqani1,#, Ryan D. Fine1,#, Mehreen Shahid1, Mingguang Li1,2, Elisa Enriquez-Hesles1 and Jeffrey S. Smith1

Chronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Here, Magani et al. identified specific downstream SNF1 targets responsible for CLS extension during CR.

, February 18, 2018

Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells

Maxence de Taffin de Tilques1,$, Jean-Paul Lasserre1,$, François Godard1, Elodie Sardin1, Marine Bouhier1, Marina Le Guedard2,3, Roza Kucharczyk4, Patrice X. Petit5, Eric Testet2, Jean-Paul di Rago1, Déborah Tribouillard-Tanvier1,#

Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). Here, de Taffin de Tilques et al. describe that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of Barth Syndrome (BTHS) and identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.

, February 12, 2018

Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces

Dino van Dissel1, Joost Willemse1, Boris Zacchetti1, Dennis Claessen1, Gerald B. Pier2, Gilles P. van Wezel1

In this article van Dissel et al. describe new insights to allow better control of liquid-culture morphology of streptomycetes, which may be harnessed to improve growth and industrial exploitation of these highly versatile natural product and enzyme producers.

, January 30, 2018

Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging

Nadia G Rampello1, Maria Stenger2, Benedikt Westermann2, Heinz D Osiewacz1

In aerobic organisms, mitochondrial F1Fo-ATP-synthase is the major site of ATP production. Here, Rampello et al. report on the role of the two dimer assembly factors PaATPE and PaATPG of the aging model Podospora anserina validating a model that links mitochondrial membrane remodeling to aging and identify specific molecular components triggering this process.

, January 26, 2018

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

Esther Gamero-Sandemetrio1, Lucía Payá-Tormo1, Rocío Gómez-Pastor1,3, Agustín Aranda1,2 and Emilia Matallana1,2

Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. Here, Gamero-Sandemetrio et al. present findings that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after active dry yeast (ADY) production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

, January 16, 2018

Molecular signature of the imprintosome complex at the mating-type locus in fission yeast

Célia Raimondi1, Bernd Jagla2, Caroline Proux3, Hervé Waxin4, Serge Gangloff1, Benoit Arcangioli1

Genetic and molecular studies have indicated that an epigenetic imprint at mat1, the sexual locus of fission yeast, initiates mating type switching. Here, Raimondi et al. characterized the recruitment of early players of mating type switching at the mat1 region and suggest a nucleoprotein protective structure defined as imprintosome.

, January 14, 2018

Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β

Mary-Anne Hartley1,¶, Remzi O. Eren1,¶, Matteo Rossi1, Florence Prevel1, Patrik Castiglioni1, Nathalie Isorce1, Chantal Desponds1, Lon-Fye Lye2, Stephen M. Beverley2, Stefan K. Drexler1,&, Nicolas Fasel1,&

The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses mediated by Toll-Like-Receptor-3 (TLR3). Here, Hartely et al. investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. They postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.

, January 13, 2018

A novel system to monitor mitochondrial translation in yeast

Tamara Suhm1, Lukas Habernig2, Magdalena Rzepka1, Jayasankar Mohanakrishnan Kaimal3, Claes Andréasson3, Sabrina Büttner2,3 and Martin Ott1

In this study Suhm et al. present a novel system to monitor mitochondrial translation by detection of mitochondrial GFP-translation through fluorescence microscopy and flow cytometry in functional mitochondria. This novel tool allows the investigation of the function and regulation of mitochondrial translation during stress signaling, aging and mitochondrial biogenesis.

Previous Next
, August 20, 2019

Inhibiting eukaryotic ribosome biogenesis: Mining new tools for basic research and medical applications

Lisa Kofler1, Michael Prattes1 and Helmut Bergler1

This article comments on work published by Awad et al (BMC Biology, 2019), which screened for novel inhibitors of the ribosome biogenesis pathway in yeast.

, August 20, 2019

Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan

Jordan Gulli1, Emily Cook1, Eugene Kroll1, Adam Rosebrock2,3, Amy Caudy2 and Frank Rosenzweig1

This review discusses alternative cultivation methods for baker’s yeast to study its chronological lifespan, with the aim of better understanding the ageing of non-dividing cells and their potential implications for the lifespan of multicellular eukaryotes such as humans.

, July 16, 2019

Evolution of the bacterial nucleosidase PpnN and its relation to the stringent response

René Lysdal Bærentsen1, Ditlev Egeskov Brodersen1 and Yong Everett Zhang2

This article comments on work published by Zhang et al (Mol Cell, 2019), which discovered an interesting mode of regulation of purine metabolism unique to Proteobacteria.

, July 15, 2019

Integrins in disguise – mechanosensors in Saccharomyces cerevisiae as functional integrin analogues

Tarek Elhasi1 and Anders Blomberg1

This article shows that although yeast lack integrin-like proteins, they possess WSC- and MID-type mechanosensors that functionally resemble integrins in animal cells, playing a role in sensing external mechanical stimuli and activating the conserved PKC1-SLT1 cell wall integrity pathway, with potential implications for understanding mechanosensing in yeast biology.

, July 1, 2019

Bacterial maze runners reveal hidden diversity in chemotactic performance

M. Mehdi Salek1,#, Francesco Carrara1,#, Vicente Fernandez1 and Roman Stocker1

This article comments on work published by Salek et al. (Nat Commun, 2019), which combined microfluidic experiments with mathematical modeling to demonstrate that even in clonal populations, bacteria are individuals with different abilities to climb chemical gradients.

, July 1, 2019

Beyond cells – The virome in the human holobiont

Rodrigo García-López1,2,3, Vicente Pérez-Brocal1,2,3 and Andrés Moya1,2,3

This article provides an overview of viromics—viral metagenomics—and its evolution, highlighting the complexity and dynamic nature of viruses beyond their traditional view as pathogens. It acknowledges the technological advancements in molecular biology and sequencing that have allowed the field to grow, while also noting that viromic research still faces significant challenges and is not as developed as bacterial metagenomics. The review underscores the importance of viruses in various ecosystems, their role in shaping the genetic landscape, and their potential impact, and looks forward to future directions in viromic research.

, July 1, 2019

Laundry and textile hygiene in healthcare and beyond

Dirk P. Bockmühl1, Jan Schages1 and Laura Rehberg1

This article shows that while institutional laundering is regulated to ensure hygiene, the trend towards energy-efficient washing at lower temperatures raises concerns about the antimicrobial efficacy of domestic laundering, with a focus on addressing microbial contamination in both clinical and home settings.

, June 11, 2019

Bacterial pathogens under high-tension: Staphylococcus aureus adhesion to von Willebrand factor is activated by force

Felipe Viela1, Pietro Speziale2,3, Giampiero Pietrocola2 and Yves F. Dufrêne1,4

This article comments on work published by Viela et al (mBio, 2019), which shows that the bacterial cell surface protein A to the large plasma glycoprotein von Willebrand factor interaction is tightly regulated by mechanical force.

, May 28, 2019

Yeast AP-1 like transcription factors (Yap) and stress response: a current overview

Claudina Rodrigues-Pousada1, Frédéric Devaux2, Soraia M. Caetano1, Catarina Pimentel1, Sofia da Silva1, Ana Carolina Cordeiro1 and Catarina Amaral1

This review summarizes current understanding of the eight Yap transcription factors in Saccharomyces cerevisiae, detailing their activation by specific stress conditions and discussing their function and evolution across various fungal species.

Previous Next
, March 17, 2017

Staphylococcus aureus type I signal peptidase: essential or not essential, that’s the question

Wouter L.W. Hazenbos1, Elizabeth Skippington2 and Man-Wah Tan1

This article comments on work published by Morisaki et al. (mBio, 2016), which characterized a novel ABC transporter. This transporter apparently compensates for SpsB’s essential function by mediating alternative cleavage of a subset of proteins at a site distinct from the SpsB-cleavage site, leading to SpsB-independent secretion.

, March 1, 2017

Transceptors as a functional link of transporters and receptors

George Diallinas

A relative newcomer in environment sensing are the so called transceptors, membrane proteins that possess both solute transport and receptor-like signaling activities. Now, the transceptor concept is further enlarged to include micronutrient sensing via the iron and zinc high-affinity transporters of Saccharomyces cerevisiae.

, February 3, 2017

S. pombe placed on the prion map

Jacqueline Hayles

This article comments on work published by Sideri et al. (Microbial Cell, 2017), which identified the Ctr4 prion in S. pombe.

December 30, 2016

Using microbes as a key tool to unravel the mechanism of autophagy and the functions of the ATG proteins

Mario Mauthe1,2 and Fulvio Reggiori1,2

Microbes have served to discover and characterize unconventional functions of the ATG proteins, which are uncoupled from their role in autophagy. In our recent study, we have taken advantage of viruses as a screening tool to determine the extent of the unconventional functions of the ATG proteome and characterize one of them.

, December 5, 2016

Autophagy: one more Nobel Prize for yeast

Andreas Zimmermann1, Katharina Kainz1, Aleksandra Andryushkova1, Sebastian Hofer1, Frank Madeo1,2 and Didac Carmona-Gutierrez1

The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumifor the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

, November 25, 2016

Physiology, phylogeny, and LUCA

William F. Martin1,2, Madeline C. Weiss1, Sinje Neukirchen3, Shijulal Nelson-Sathi4, Filipa L. Sousa3

Genomes record their own history. But if we want to look all the way back to life’s beginnings some 4 billion years ago, the record of microbial evolution that is preserved in prokaryotic genomes is not easy to read. The classical approach has been to look for genes that are universally distributed. Another approach is to make all trees for all genes, and sift out the trees where signals have been overwritten by lateral gene transfer. What is left ought to be ancient. If we do that, what do we find?

, September 30, 2016

The curious case of vanishing mitochondria

Anna Karnkowska1 and Vladimír Hampl2

Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs). Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized – Monocercomonoides sp. The discovery of such bona fide amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution.

, September 23, 2016

Accumulation of metabolic side products might favor the production of ethanol in Pho13 knockout strains

Guido T. Bommer, Francesca Baldin & Emile Van Schaftingen

This article comments on work published by Collard et al. (Nat Chem Biol, 2016), which describes the discovery of a striking example illustrating the metabolite repair concept.

, September 4, 2016

Sexually transmitted infections: old foes on the rise

Didac Carmona-Gutierrez1,*, Katharina Kainz1 and Frank Madeo1,2,*

Sexually transmitted infections (STIs) are commonly spread via sexual contact. It is estimated that one million STIs are acquired every day worldwide. Besides their impact on sexual, reproductive and neonatal health, they can cause disastrous and life-threatening complications if left untreated. In addition to this personal burden, STIs also represent a socioeconomic problem, deriving in treatment costs of tremendous proportions. Despite a substantial progress in diagnosis, treatment and prevention, the incidence of many common STIs is increasing, and STIs continue to represent a global public health problem and a major cause for morbidity and mortality. With this Special Issue, Microbial Cell provides an in-depth overview of the eight major STIs, covering all relevant features of each infection.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.