, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 27, 2017

The frequency of yeast [PSI+] prion formation is increased during chronological ageing

Shaun H. Speldewinde1 and Chris M. Grant1

Aging is marked by a decline in cellular functions and the increased formation of the yeast [PSI+] prion, an altered translation termination factor, which suggests that autophagy suppresses age-related prion development. Interestingly, yeast cells that adopt the [PSI+] form exhibit better survival through aging, indicating that [PSI+] formation, linked to enhanced autophagy, may confer advantages such as reduced protein aggregation and improved cell viability.

, March 2, 2017

A multigene family encoding surface glycoproteins in Trypanosoma congolense

Magali Thonnus1, Amandine Guérin1,2 and Loïc Rivière1

Trypanosoma congolense, the causative agent of the most important livestock disease in Africa, expresses specific surface proteins involved in its parasitic lifestyle. By mining the T. congolense genome database, we identified a novel family of lectin-like glycoproteins (TcoClecs).

, March 2, 2017

Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

Joep Schothorst1,2, Griet Van Zeebroeck1,2 and Johan M. Thevelein1,2

We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target.

, February 3, 2017

Balanced CoQ6 biosynthesis is required for lifespan and mitophagy in yeast

Isabel González-Mariscal, Aléjandro Martín-Montalvo, Cristina Ojeda-González, Adolfo Rodríguez-Eguren, Purificación Gutiérrez-Ríos, Plácido Navas, and Carlos Santos-Ocaña

In brief, we show that, in yeast, Ptc7 modulates the adaptation to respiratory metabolism by dephosphorylating Coq7 to supply newly synthesized CoQ6, and by activating mitophagy to remove defective mitochondria at stationary phase, guaranteeing a proper CLS in yeast.

, February 1, 2017

Mutational analysis of fructose-1,6-bis-phosphatase FBP1 indicates partially independent functions in gluconeogenesis and sensitivity to genotoxic stress

Ali Ghanem, Ana Kitanovic, Jinda Holzwarth, Stefan Wölfl

Our results support predicted vital roles of several fructose-1,6-bisphosphatase residues for enzymatic activity and led to the identification of residues indispensable for the MMS-sensitizing effect. Despite an overlap between these two properties, careful analysis revealed two mutations, Asn75 and His324, which decouple the enzymatic activity and the MMS-sensitizing effect, indicating two distinctive biological activities linked in this key gluconeogenesis enzyme.

, January 2, 2017

The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe

Theodora Sideri1, Yoko Yashiroda2, David A. Ellis1, María Rodríguez-López1, Minoru Yoshida2, Mick F. Tuite3 & Jürg Bähler1

Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi.

, December 29, 2016

Improvement of biochemical methods of polyP quantification

Samuel Bru1, Javier Jiménez1, David Canadell2,#, Joaquín Ariño2, Josep Clotet1

As the main output of this evaluation we propose a straightforward and robust procedure that can be used as gold standard protocol for cellular polyP purification and determination from unicellular organisms, thus providing consistency to measurements and facilitating inter-laboratory comparisons and biological interpretation of the results.

, December 5, 2016

Bax mitochondrial relocation is linked to its phosphorylation and its interaction with Bcl-xL

David Garenne1,2, Thibaud T. Renault1,3, Stéphen Manon1

The heterologous expression of Bax, and other Bcl-2 family members, in the yeast Saccharomyces cerevisiae, has proved to be a valuable reporter system to investigate the molecular mechanisms underlying their interaction with mitochondria. Our data provide the molecular basis for a model of dynamic equilibrium for Bax localization and activation, regulated both by phosphorylation and Bcl-xL.

, December 4, 2016

Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae

Santiago Cavero1,2, Esther Herruzo1, David Ontoso1,3 and Pedro A. San-Segundo1

In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is a surveillance mechanism that monitors critical processes, such as recombination and chromosome synapsis, which are essential for proper distribution of chromosomes to the meiotic progeny. We report here that Sas2-mediated acetylation of histone H4 at lysine 16 (H4K16ac) modulates meiotic checkpoint activity in response to synaptonemal complex defects. Our results reveal that proper levels of H4K16ac orchestrate this meiotic quality control mechanism and that Sir2 impinges on additional targets to fully activate the checkpoint.

Previous Next
, June 20, 2016

Antibiotic use in childhood alters the gut microbiota and predisposes to overweight

Katri Korpela and Willem M de Vos

This article comments on work published by Korpela et al. (Nat Commun, 2016), which investigates the correlation between the use of antibiotics in early life and the excessive weight gain in later childhood.

, June 20, 2016

Evidence for the hallmarks of human aging in replicatively aging yeast

Georges E. Janssens, Liesbeth M. Veenhoff

Recently, efforts have been made to characterize the hallmarks that accompany and contribute to the phenomenon of aging, as most relevant for humans. Remarkably, studying the finite lifespan of the single cell eukaryote budding yeast has been paramount for our understanding of aging. Here, we compile observations from literature over the past decades of research on replicatively aging yeast to highlight how the hallmarks of aging in humans are present in yeast.

, May 10, 2016

Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications

Sandro Roier, Franz G. Zingl, Fatih Cakar, and Stefan Schild

This article comments on work published by Roier et al. (Nat Commun, 2016), which proposes a novel and highly conserved bacterial outer membane vesicle biogenesis mechanism based on phospholipid accumulation in the outer leaflet of the outer membrane.

, April 16, 2016

A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance

Mehdi Kabbage1, Ryan Kessens1 and Martin B. Dickman2

This article comments on work published by Li et al. (Plant Cell, 2016), which focuses on the role of Bcl-2-associated athanogene 6 (BAG6) in plant innate immunity, showing that BAG6 plays a key role in basal plant defense against fungal pathogens.

, April 14, 2016

The molecular and cellular action properties of artemisinins: what has yeast told us?

Chen Sun and Bing Zhou

Artemisinin (ART) or Qinghaosu is a natural compound possessing superior anti-malarial activity. Although intensive studies have been done in the medicinal chemistry field to understand the structure-effect relationship, the biological actions of artemisinin are poorly understood and controversial. This review summarizes what we have learned from yeast about the basic biological properties of ARTs, as well as some key unanswered questions.

, April 14, 2016

Metabolic network structure and function in bacteria goes beyond conserved enzyme components

Jannell V. Bazurto# and Diana M. Downs

This article comments on work published by Bazurto et al. (MBio, 2016), which demonstrated that conservation of metabolic components was not sufficient to predict network structure and function Escherichia coli.

, April 5, 2016

Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

Jigang Wang1,2,# and Qingsong Lin2

This article comments on work published by Wang et al. (Nat Commun, 2014), which provides insights into the mode-of-action of artemisinin and its specificity against malaria parasites.

, April 5, 2016

Translational repression in malaria sporozoites

Oliver Turque1, Tiffany Tsao1, Thomas Li1 and Min Zhang1,2

This article comments on work published by Zhang et al. (PLoS Pathog, 2016), which summarizea recent advances in the translational repression of gene expression in the malaria sporozoite.

, April 4, 2016

Chromatin binding and silencing: Two roles of the same protein Lem2

Ramón Ramos Barrales and Sigurd Braun

This article comments on work published by Barrales et al. (Genes Dev, 2016), which identifies the nuclear envelope protein Lem2, a homolog of metazoan lamin-associated proteins (LAPs), as a relevant factor for heterochromatin silencing and perinuclear localization in the fission yeast Schizosaccharomyces pombe.

Previous Next
October 4, 2015

Starting with a degron: N-terminal formyl-methionine of nascent bacterial proteins contributes to their proteolytic control

R. Jürgen Dohmen

In this article, the author comments on the study “Formyl-methionine as a degradation signal at the N-termini of bacterial proteins.” by Piatkov et al. (Microbial Cell, 2015), discussing a novel N-terminal degradation signal (N-degron) that targets nascent proteins for degradation in Escherichia coli by a new branch of the bacterial N-end rule pathway, termed the fMet/N-end rule pathway

September 23, 2015

Elongation factor-P at the crossroads of the host-endosymbiont interface

Andrei Rajkovic1, Anne Witzky2, William Navarre3, Andrew J. Darwin4 and Michael Ibba5

Elongation factor P (EF-P) is an ancient bacterial translational factor that aids the ribosome in polymerizing oligo-prolines. EF-P structurally resembles tRNA and binds in-between the exit and peptidyl sites of the ribosome to accelerate the intrinsically slow reaction of peptidyl-prolyl bond formation. Recent studies have identified in separate organisms, two evolutionarily convergent EF-P post-translational modification systems (EPMS), split predominantly between gammaproteobacteria, and betaproteobacteria. Here, the authors highlight the recent discoveries made regarding EPMSs, with a focus on how these incomplete modification pathways shape or have been shaped by the endosymbiont-host relationship.

September 6, 2015

Feelin’ it: Differential oxidative stress sensing mediated by Cyclin C

W. Scott Moye-Rowley

Microbial cells that live exposed directly to their environmental milieu are faced with the challenge of adapting to the dynamic stress conditions that will inevitably be encountered. These stress conditions may vary over wide ranges and the most efficient responses would be tuned to produce a proportional buffering change. A mild stress would most efficiently be dealt with by a mild metabolic reprogramming that would prevent serious damage. A more severe environmental challenge would demand a more dramatic cellular compensatory response.

August 2, 2015

Subverting lysosomal function in Trypanosoma brucei

Sam Alsford

This article discusses Koh et al. (2015) “The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei (Microbial Cell 2(8): 288-298).

July 6, 2015

Entamoeba histolytica – tumor necrosis factor: a fatal attraction

Serge Ankri

This article comments on the study “In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor” by Silvestre et al. (Microbial Cell, 2015).

May 30, 2015

Toxoplasma control of host apoptosis: the art of not biting too hard the hand that feeds you

Sébastien Besteiro

Toxoplasma gondii is an obligate intracellular parasite that is able to infect a multitude of different vertebrate hosts and can survive in virtually any nucleated cell. Here, the authors discuss the article “Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly” by Graumann et al. (2015, Microbial Cell).

May 27, 2015

A safety catch for ornithine decarboxylase degradation

Christof Taxis

Feedback inhibition is a common mechanism to adjust the activity of an enzyme in accordance with the abundance of a product. This article comments on the study “Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome” by Beenukumar et al. (2015), Microbial Cell.

January 28, 2015

Fancy a gene? A surprisingly complex evolutionary history of peroxiredoxins.

Alena Zíková1,2, Miroslav Oborník1,2,3 and Julius Lukeš1,2,4

In this comment, the authors discuss the article “Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites” (Djuika et al., Microbial Cell 2015).

January 23, 2015

Quorum protection, growth and survival

Ian G . Macreadie

For the growth of a cell culture, one inoculates not with one cell but with a quorum of cells. This most often a requirement, not just a convenience, and most of us take this for granted without question. Here this observation is re-examined to understand why a quorum may be required to grow cells. The importance of quorums may be widespread in the aspects of microbiology they affect. It is very likely that quorums are connected with and have a large impact on the determination of Minimal Inhibitory Concentrations. It is also possible that low cell density may adversely affect cell survival, however, this is an area where even less is known. The need for a quorum might affect other aspects of microbial cell culture, cell isolation and cell preservation. Effects also extend to mammalian cell culture. Here I seek to review studies that have been documented and speculate on how the information might be utilized in the future.

Previous Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.