, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, September 1, 2014

Time resolved DNA occupancy dynamics during the respiratory oscillation uncover a global reset point in the yeast growth program

Cornelia Amariei, Rainer Machné, Viktor Stolc, Tomoyoshi Soga, Masaru Tomita and Douglas B. Murray

Using multiple approaches, this work implies a nucleosome focusing event as a key step that resets transcription during the respiratory oscillation.

, August 27, 2014

Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

António Rego#, Ana Marta Duarte#, Flávio Azevedo#, Maria João Sousa, Manuela Côrte-Real and Susana R. Chaves

This work characterizes the involvement of MAPK signaling pathways in cell death induced by acetic acid in Saccharomyces cerevisiae.

, August 9, 2014

Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa

A. Pedro Gonçalves1,2, João Monteiro2, Chiara Lucchi2, David J. Kowbel3, J. Miguel Cordeiro1,4, Paulo Correia-de-Sá1,4, Daniel J. Rigden5, N. Louise Glass3, Arnaldo Videira1,2

The results presented here reveal that in Neurospora crassa, extracellular Ca2+ modulates cell death and the transcriptional alterations induced by staurosporine, and lead to the identification of two novel putative Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes.

, August 1, 2014

Multiple metabolic requirements for size homeostasis and initiation of division in Saccharomyces cerevisiae

Shivatheja Soma, Kailu Yang, Maria I. Morales and Michael Polymenis

This article reveals an unexpected diversity in the G1 cell cycle phenotypes of metabolic and biosynthetic Saccharomyces cerevisiae mutants, suggesting that growth requirements for cell division are multiple, distinct and imposed throughout the G1 phase of the cell cycle.

, July 6, 2014

Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

Daisuke Watanabe, Rie Kikushima, Miho Aitoku, Akira Nishimura, Iwao Ohtsu, Ryo Nasuno, and Hiroshi Takagi

The herein presented results indicate that in Saccharomyces cerevisiae, histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, it suggests that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

, June 22, 2014

Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina

Matthias Wiemer and Heinz D. Osiewacz

In this article, paraquat is used to experimentally induce strong cellular oxidative stress in Podospora anserina wild-type cultures of different age, finding that this treatment has profound effects on gene expression, growth and lifespan.

, June 2, 2014

Heat shock protein 90 and calcineurin pathway inhibitors enhance the efficacy of triazoles against Scedosporium prolificans via induction of apoptosis

Fazal Shirazi and Dimitrios P. Kontoyiannis

This article reports for the first time that posaconazole (PCZ) or itraconazolein (ICZ) in combination with the calcineurin inhibitor tacrolimus or the Hsp90 inhibitor 17-demethoxy-17-(2-propenylamino) geldanamycin renders S. prolificans exquisitely sensitive to PCZ or ICZ via apoptosis.

, May 20, 2014

At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations

Adam Kawałek and Ida J. van der Klei

The data presented in this work indicate that in H. polymorpha at neutral pH the chronological lifespan invariably extends upon increasing the carbon source concentration.

, March 3, 2014

Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

Qiuqiang Gao1, Liang-Chun Liou2, Qun Ren2, Xiaoming Bao3 and Zhaojie Zhang2

In this work, the authors report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0) and that this damage is related to elevated levels of SCW11 and salt stress-induced reactive oxygen species.

Previous Next
, December 18, 2017

Ras signalling in pathogenic yeasts

Daniel R. Pentland1, Elliot Piper-Brown1, Fritz A. Mühlschlegel1,2 and Campbell W. Gourlay1

In this article Pentland et al. review the roles of Ras protein function and signalling in the major human yeast pathogens Candida albicans and Cryptococcus neoformans and discuss the potential for targeting Ras as a novel approach to anti-fungal therapy.

, December 11, 2017

The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering

Matthieu Jules1

In this article, the authors comment on the study “Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis” by Charbonnier et al. (mBio, 2017), which identified and characterized a pyruvate transport system in the Gram-positive (G+ve) bacterium Bacillus subtilis, a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics.

, December 9, 2017

A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori

Silja Wessler1 and Steffen Backert2

In this article, the authors comment on the study “Helicobacter pylori Employs a Unique Basolateral Type IV Secretion Mechanism for CagA Delivery” by Tegtmeyer et al. (Cell Host Microbe, 2017), discussing that the finding of a T4SS receptor suggests the presence of a sophisticated control mechanism for the injection of CagA and the possible impact of this novel signaling cascade on pathogenesis during infection with Helicobacter pylori.

, November 28, 2017

A new role for the nuclear basket network

Paola Gallardo1, Silvia Salas-Pino1 and Rafael R. Daga1

This article comments on work published by Salas-Pino et al. (J Cell Biol, 2017), which describes a novel function of the fission yeast nuclear basket component – the translocated promoter region (TPR) nucleoporin Alm1 – in proper localization of the proteasome to the nuclear envelope.

, November 24, 2017

VAMP8 mucin exocytosis attenuates intestinal pathogenesis by Entamoeba histolytica

Steve Cornick1, France Moreau1, Herbert Y. Gaisano2, Kris Chadee1

This article comments on work published by Cornick et al. (mBio, 2017), which nominates SNARE-mediated exocytosis as the putative mechanism responsible for pathogen-induced mucus secretion from goblet cells.

, November 3, 2017

Shutdown of interferon signaling by a viral-hijacked E3 ubiquitin ligase

Kaitlin A. Davis1 and John T. Patton2

This article comments on work published by Davis et al. (mBio, 2017), which describes molecular requirements that govern NSP1 recognition of β-TrCP, including an essential degron phosphorylation event, and the step-wise incorporation of NSP1 into hijacked cullin-RING E3 ligases (CRLs) that ubiquitinate and tag β-TrCP for degradation.

, October 30, 2017

Breaking the bad: Bacillus blocks fungal virulence factors

François L. Mayer1 and James W. Kronstad1

This article comments on work published by Mayer & Kronstad (mBio, 2017), which identified the soil bacterium, Bacillus safensis as a potent inhibitor of virulence factor production by two major fungal pathogens of humans, Cryptococcus neoformans, and Candida albicans.

, October 24, 2017

The integrated stress response in budding yeast lifespan extension

Spike D.L. Postnikoff1, Jay E. Johnson2 and Jessica K. Tyler1

 

This article summarizes how the budding yeast Saccharomyces cerevisiae has been instrumental in unraveling the molecular and cellular determinants of aging, and how the induction of cellular stress responses has been associated with experimental lifespan extension, thus underscoring the value of yeast as a model for developing potential aging therapies for humans.

, September 18, 2017

Yeast for virus research

Richard Yuqi Zhao

This article summarizes the use of budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) in virus research, highlighting their advantages for studying viral replication, interaction with host cells, and fundamental cellular processes affected by viruses, while discussing their potential in analyzing small viral genomes and facilitating the discovery of antiviral drugs.

Previous Next
, August 1, 2016

Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation.

Saul M. Honigberg

Diploid budding yeast (Saccharomyces cerevisiae) can adopt one of several alternative differentiation fates in response to nutrient limitation, and each of these fates provides distinct biological functions. When different strain backgrounds are taken into account, these various fates occur in response to similar environmental cues, are regulated by the same signal transduction pathways, and share many of the same master regulators. I propose that the relationships between fate choice, environmental cues and signaling pathways are not Boolean, but involve graded levels of signals, pathway activation and master-regulator activity.

, May 1, 2016

Phosphatidylthreonine: An exclusive phospholipid regulating calcium homeostasis and virulence in a parasitic protist

Ruben D. Arroyo-Olarte and Nishith Gupta

This article comments on work published by Kuchipudi et al. (Microbial Cell, 2016), which describes the role of phohsphatidylthreonine in the regulation of calcium homeostasis and virulence in the protozoan parasite Toxoplasma gondii.

, April 13, 2016

Non-genetic impact factors on chronological lifespan and stress resistance of baker’s yeast

Michael Sauer and Diethard Mattanovich

This article comments on work published by Bisschops et al. (Microbial Cell, 2015), which illustrates how important the choice of the experimental setup is and how culture conditions influcence cellular aging and survival in biotechnological processes.

, April 4, 2016

What’s old is new again: yeast mutant screens in the era of pooled segregant analysis by genome sequencing

Chris Curtin and Toni Cordente

This article comments on work published by Den Abt et al. (Microbial Cell, 2016), which identified genes involved in ethyl acetate formation in a yeast mutant screen based on a new approach combining repeated rounds of chemical mutagenesis and pooled segregant analysis by whole genome sequencing.

, March 17, 2016

The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract

Eduardo Lopez-Medina1 and Andrew Y. Koh2

This article comments on work published by Lopez-Medina et al. (PLoS Pathog, 2015) and Fan et al. (Nat Med, 2015), which utilize an “artificial” niche, the antibiotic-treated gut with concomitant pathogenic microbe expansion, to gain insight in bacterial-fungal interactions in clinically common scenarios.

, March 6, 2016

Gearing up for survival – HSP-containing granules accumulate in quiescent cells and promote survival

Ruofan Yu and Weiwei Dang

This article comments on work published by Lee et al. (Microbial Cell, 2016), which reports that distinct granules are formed in quiescent and non-quiescent cells, which determines their respective cell fates.

, March 3, 2016

Yeast screening platform identifies FDA-approved drugs that reduce Aβ oligomerization

Triana Amen1,2 and Daniel Kaganovich1

This article comments on work published by Park et al. (Microbial Cell, 2016), which discovered a number of small molecules capable of modulating Aβ aggregation in a yeast model.

November 26, 2015

Groupthink: chromosomal clustering during transcriptional memory

Kevin A. Morano

In this article, the authors comment on the study “NO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering.” by Brickner et al. (Microbial Cell, 2015), discussing the importance and molecular mechanisms of chromosomal clustering during transcriptional memory.

November 26, 2015

Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration

Amit Shrestha1, 2 and Lynn A. Megeney1, 2, 3

Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. This article discusses the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.