Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans
This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.
Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes
This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.
Luminal acetylation of microtubules is not essential for Plasmodium berghei and Toxoplasma gondii survival
Acetylation of α-tubulin at lysine 40 is not essential for cytoskeletal stability in Plasmodium berghei or Toxoplasma gondii, suggesting redundancy and plasticity in microtubule regulation in these parasites.
The dual-site agonist for human M2 muscarinic receptors Iper-8-naphtalimide induces mitochondrial dysfunction in Saccharomyces cerevisiae
S. cerevisiae is a model to study human GPCRs. N-8-Iper, active against glioblastoma via M2 receptor, causes mitochondrial damage in yeast by binding Ste2, highlighting evolutionary conservation of GPCRs.
Integrative Omics reveals changes in the cellular landscape of peroxisome-deficient pex3 yeast cells
To uncover the consequences of peroxisome deficiency, we compared Saccharomyces cerevisiae wild-type with pex3 cells, which lack peroxisomes, employing quantitative proteomics and transcriptomics technologies.
Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans
Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*
This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.
Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes
Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco
This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.
Sir2 regulates selective autophagy in stationary-phase yeast cells
Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim
This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.
Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general
Valentina Peleh1, Jan Riemer2, Andrew Dancis3 and Johannes M. Herrmann1
In this work, the authors suggest that in Saccharomyces cerevisiae, the Mia40-dependent oxidation of proteins in the intermembrane space only takes place in specific proteins and presumably relies on the presence of Mia40-binding sites.
Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death
Christopher Chin1,2,#, Faith Donaghey1,#, Katherine Helming1,3,#, Morgan McCarthy1,#, Stephen Rogers1, and Nicanor Austriaco1
This work suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.
Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells
Vitor Teixeira1,2, Tânia C. Medeiros1, Rita Vilaça1,2, Pedro Moradas-Ferreira1,2, and Vítor Costa1,2
Overall, this article shows that the TORC1-Sch9p axis is deregulated in Isc1p-deficient Saccharomyces cerevisiae cells, contributing to mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature aging of isc1Δ cells.
Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae.
Maksim I. Sorokin1,3, Dmitry A. Knorre2,3, and Fedor F. Severin2,3
The data preseted herein suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.
Tracking autophagy during proliferation and differentiation of Trypanosoma brucei
William R. Proto1, Nathaniel G. Jones1, Graham H. Coombs2, and Jeremy C. Mottram1
This article provides insights into the function of autophagy, a cellular degradation and recycling pathway, in the protozoan parasite Trypanosoma brucei.
Protein aggregation triggers a declining libido in elder yeasts that still have a lust for life
Fabrice Caudron
This article comments on work published by Schlissel et al (Science 2017), showing that aging in yeast does not lead to the expected loss of heterochromatin silencing due to Sir2 inactivity, but rather to reduced mating pheromone sensitivity caused by the aggregation of the RNA-binding protein Whi3, which can be reversed by eliminating Whi3’s polyglutamine domain.
Post-transcriptional regulation of ribosome biogenesis in yeast
Isabelle C. Kos-Braun and Martin Koš
Microorganisms adapt to environmental changes by regulating their metabolism, and one key survival strategy is to decrease energy use during adverse conditions by halting ribosome production, with recent findings showing yeast can switch between pre-rRNA processing pathways in response to environmental shifts, adding complexity to ribosome biogenesis regulation.
Placeholder factors in ribosome biogenesis: please, pave my way
Francisco J. Espinar-Marchena, Reyes Babiano1 and Jesús de la Cruz
In ribosome synthesis, “placeholder” factors are crucial trans-acting elements that regulate the timing and assembly of ribosomal proteins, ensuring speed and accuracy in this intricate process by preventing premature interactions and guiding the proper formation of functional ribosomal subunits.
Insights from the redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains
Hong Li1,2, Tiandi Yang3, Tingting Liao2, Aleksandra W. Debowski2,4, Hans-Olof Nilsson2, Stuart M. Haslam3, Anne Dell3, Keith A. Stubbs4, Barry J. Marshall2 and Mohammed Benghezal2,5
This article comments on work published by Li et al. (PloS Pathog, 2017), focusing on Helicobacter pylori infections. They are mostly asymptomatic but can lead to serious conditions, and H. pylori lipopolysaccharide (LPS) is crucial for colonization and persistence, making the study of its structure and biosynthesis pathway vital for understanding pathogenesis and developing treatments.
Evading plant immunity: feedback control of the T3SS in Pseudomonas syringae
Christopher Waite1, Jörg Schumacher1, Milija Jovanovic1, Mark Bennett1 and Martin Buck1
This article comments on work published by Waite et al. (mBio, 2017), which indicates that a negative autogenous control mechanism, where the sigma factor HrpL represses its own expression, permits the plant pathogen Pseudomonas syringae to fine-tune its type III secretion system, potentially reducing the elicitation of plant immunity and enhancing its ability to cause disease.
Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity
Facundo Rodriguez Ayala, Carlos Bauman, Sebastián Cogliati, Cecilia Leñini, Marco Bartolini and Roberto Grau
This article comments on work published by Donato et al. (Nat Commun, 2017), which reveals that the probiotic Bacillus subtilis extends the lifespan of Caenorhabditis elegans via mechanisms including the formation of biofilms and the production of signaling molecules like NO and CSF, suggesting a potential pathway through insulin-like signaling that could impact human longevity and age-related diseases.
Chlamydia trachomatis’ struggle to keep its host alive
Barbara S. Sixt1-4, Raphael H. Valdivia5, Guido Kroemer1-4,6-7
This article comments on work published by Sixt et al. (Cell Host Microbe, 2016), which analyzed a CpoS-deficient mutant yielding unique insights into the nature of cell-autonomous defense responses against Chlamydia.
Means of intracellular communication: touching, kissing, fusing
Anne Spang1
This work highlights different aspects of communication between organelles, including the importance of organellar contact sites.
Neuropathogenesis caused by Trypanosoma brucei, still an enigma to be unveiled
Katherine Figarella1
This Editorial addresses the meningo-encephalitic stage of Trypanosoma brucei infection and the resultig neuropathogenesis as well as the impact that the application of tools developed in the last years in the field of neuroscience will have on the study of neglected tropical diseases.
Lichens – growing greenhouses en miniature
Martin Grube1
This commentary article provides an overview on different aspects of lichen biology and the remarkable symbiotic association between fungi and algae.
Regulation of the mitochondrial permeability transition pore and its effects on aging
Damiano Pellegrino-Coppola1
Aging is linked to mitochondrial function, with the mitochondrial permeability transition pore (mPTP) playing a key role. Yeast is a useful model for studying how mPTP affects cell survival, aging, and related diseases.
Fungal infections in humans: the silent crisis
Katharina Kainz1, Maria A. Bauer1, Frank Madeo1-3 and Didac Carmona-Gutierrez1
This article highlights the growing global threat of fungal infections – exacerbated by rising drug resistance and medical practices – and emphasizes the urgent need for intensified research to develop more effective antifungal strategies.
Digesting the crisis: autophagy and coronaviruses
Didac Carmona-Gutierrez1, Maria A. Bauer1, Andreas Zimmermann1,2, Katharina Kainz1,
Sebastian J. Hofer1, Guido Kroemer3-7 and Frank Madeo1,2,8
This article reviews the multifaceted role of autophagy in antiviral defense and highlights how coronaviruses, including SARS-CoV-2, interact with this pathway, raising the possibility that targeting autophagy could offer novel therapeutic strategies against COVID-19.
Microbial Cell
is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.
you can trust
Can’t find what you’re looking for?
You can browse all our issues and published articles here.
FAQs
Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.
The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer
Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.
Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:
2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.
2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.
2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.
2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.
2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).
2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.
2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.
Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.
The long and winding road of reverse genetics in Trypanosoma cruzi
Miguel A. Chiurillo1 and Noelia Lander1
This Editorial provides a brief historic overview that highlights the strengths and weaknesses of the molecular strategies that have been developed to genetically modify Trypanosoma cruzi, emphasizing the future directions of the field.