, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, February 21, 2024
Quantifying yeast lipidomics by high-performance thin-layer chromatography (HPTLC) and comparison to mass spectrometry-based shotgun lipidomics

Quantifying yeast lipidomics by high-performance thin-layer chromatography (HPTLC) and comparison to mass spectrometry-based shotgun lipidomics

Thorsten Meyer1, Oskar Knittelfelder2, Martin Smolnig1 and Patrick Rockenfeller1

Lipidomic analysis in diverse biological settings has become a frequent tool to increase our understanding of the processes of life. Here we describe a method to analyse basic lipidomics in yeast using HPTLC and offer comparison to measurement of the same samples with MS-based shotgun lipidomics.

, February 20, 2024
A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in <i>Anabaena</i> sp. PCC 7120

A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in Anabaena sp. PCC 7120

Julia Graf1, Leonard Fresenborg1,2, Hans-Michael Seitz2,3, Rafael Pernil1 and Enrico Schleiff1,2,4,5

Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.

, February 19, 2024
Predictable regulation of survival by intratumoral microbe-immune crosstalk in patients with lung adenocarcinoma

Predictable regulation of survival by intratumoral microbe-immune crosstalk in patients with lung adenocarcinoma

Shuo Shi1, Yuwen Chu2,3, Haiyan Liu4,5, Lan Yu6,7,8, Dejun Sun8,9, Jialiang Yang2,3,5, Geng Tian2,3, Lei Ji2,3, Cong Zhang10 and Xinxin Lu11

Intratumoral microbiota can regulate the tumor immune microenvironment (TIME) and mediate tumor prognosis by promoting inflammatory response or inhibiting anti-tumor effects. Our study demonstrated that intratumoral microbiota-immune crosstalk was strongly associated with prognosis in LUAD patients, which would provide new targets for the development of precise therapeutic strategies.

, January 9, 2024
Two TonB-dependent outer membrane transporters involved in heme uptake in <i>Anabaena</i> sp. PCC 7120

Two TonB-dependent outer membrane transporters involved in heme uptake in Anabaena sp. PCC 7120

Julia Graf1, Martin Schöpperle1,2, Rafael Pernil1 and Enrico Schleiff1,3,4

Low availability of micronutrients such as iron has enforced the evolution of uptake systems in all kingdoms of life. In our study, we conclude that heme transport might not be restricted to Anabaena, but at the same time is not specific to a cyanobacterial order and thus might be related to the habitat of origin, a notion which needs to be challenged in the future.

January 5, 2024
The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit

The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit

Yiannis Pyrris1, Georgia F. Papadaki1, Emmanuel Mikros2 and George Diallinas1,3

FurE is a H+ symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus Aspergillus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters.

, November 23, 2023
Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation

Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation

Elisabetta de Alteriis1, Guido Incerti2, Fabrizio Cartenì3, Maria Luisa Chiusano3, Chiara Colantuono3, Emanuela Palomba4, Pasquale Termolino4, Francesco Monticolo3,5, Alfonso Esposito3, Giuliano Bonanomi3,6, Rosanna Capparelli3, Marco Iannaccone3,7, Alessandro Foscari2, Carmine Landi8, Palma Parascandola8, Massimo Sanchez9, Valentina Tirelli9, Bruna de Falco3, Virginia Lanzotti3 and Stefano Mazzoleni3,6

Our study demonstrates that extracellular DNA released by living cells can impact the growth rate of Saccharomyces cerevisiae cultures, showing similarities to extrachromosomal circular DNA and leading to cell cycle arrest in the S phase, suggesting potential new functional roles of exDNA.

, October 25, 2023
Basal level of ppGpp coordinates <i>Escherichia coli</i> cell heterogeneity and ampicillin resistance and persistence

Basal level of ppGpp coordinates Escherichia coli cell heterogeneity and ampicillin resistance and persistence

Paulina Katarzyna Grucela1 and Yong Everett Zhang1

The universal stringent response alarmone ppGpp (guanosine penta and tetra phosphates) plays a crucial role in various aspects of fundamental cell physiology (e.g., cell growth rate, cell size) and thus bacterial tolerance to and survival of external stresses, including antibiotics. In tihs study, we discuss the fundamental role of basal level of ppGpp in regulating cell homogeneity and ampicillin persistence.

, August 18, 2023
Investigation of the acetic acid stress response in <i>Saccharomyces cerevisiae</i> with mutated H3 residues

Investigation of the acetic acid stress response in Saccharomyces cerevisiae with mutated H3 residues

Nitu Saha1, Swati Swagatika1 and Raghuvir Singh Tomar1

Yeast cells respond to acetic acid in diverse ways. Here, we have elucidated the deleterious effects of acetic acid on different histone mutants

, August 17, 2023
The coenzyme B<sub>12</sub> precursor 5,6-dimethylbenzimidazole is a flavin antagonist in <i>Salmonella</i>

The coenzyme B12 precursor 5,6-dimethylbenzimidazole is a flavin antagonist in Salmonella

Lahiru Malalasekara1 and Jorge C. Escalante-Semerena1,*

Here we investigated why 5,6-dimethylbenzimidazole (DMB) inhibits in S. Typhimurium. Briefly, we determined that the structural similarities of the substituted benzene ring of DMB with the isoalloxazine moiety of flavins is responsible for the deleterious effects of this CoB12 precursor.

Previous Next
June 23, 2015

Wanted Plasmodium falciparum, dead or alive

Fatimata Sow1, Mary Nyonda1, Anne-Lise Bienvenu1, 2, Stephane Picot1, 2

In this article, mechanisms of cell death in unicellular parasites are discussed, focussing on “programmed cell death” in Plasmodium.

June 11, 2015

Yeast as a tool to explore cathepsin D function

H. Pereira1, C.S.F. Oliveira1,2, L. Castro1, A. Preto1, S. R. Chaves1,#, M. Côrte-Real1,#

Cathepsin D has garnered increased attention in recent years, mainly since it has been associated with several human pathologies. This review summarizes how cathepsin D can have both anti- and pro-survival functions depending on its proteolytic activity, cellular context and stress stimulus.

May 22, 2015

Coordinate responses to alkaline pH stress in budding yeast

Albert Serra-Cardona, David Canadell and Joaquín Ariño

This review summarizes the modulation of a substantial number of signaling pathways whose participate in the alkaline response in yeast. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways.

May 21, 2015

Handcuffs for bacteria – NDP52 orchestrates xenophagy of intracellular Salmonella

Pauline Verlhac1,2,3,4,5, Christophe Viret1,2,3,4,5 and Mathias Faure1,2,3,4,5

This microreview discusses the article “Autophagy Receptor NDP52 Regulates Pathogen-Containing Autophagosome Maturation” by Verlhac et al. (2015), Cell Host Microbe.

May 20, 2015

Struggling for breath in Sherbrooke: 1st Symposium on “One mitochondrion, many diseases” in Sherbrooke, Québec, Canada, March 11th, 2015

Ralf J. Braun1,#, Verónica I. Dumit2,3,#, Cécile Monpays4, Xavier Roucou5, Daniel Serrano6, Julie St-Pierre7, Paula J. Waters8, Ian Bates9, and Denis Gris10

This meeting report summarizes discussions during the “1st symposium on “One mitochondrion, many diseases,” which took place in Sherbrooke in southern Québec in 2015.

May 4, 2015

Understanding grapevine-microbiome interactions: implications for viticulture industry

Iratxe Zarraonaindia1,2 and Jack A. Gilbert3,4,5,6

This microreview discusses the article “The soil microbiome influences grapevine-associated microbiota” by Zarraonaindia et al. (2015), MBio, which reports that the grapevine-associated microbiota depends on the soil microbiome.

May 4, 2015

Cytokinins beyond plants: synthesis by Mycobacterium tuberculosis

Marie I. Samanovic and K. Heran Darwin

This microreview discusses “Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium tuberculosis against Nitric Oxide” by Samanovic et al. (2015), Mol Cell.

April 8, 2015

Yeast as a model system to study metabolic impact of selenium compounds

Enrique Herrero1,* and Ralf Erik Wellinger2

Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. In this article, the authors propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.

March 24, 2015

Understanding structure, function, and mutations in the mitochondrial ATP synthase

Ting Xu1, Vijayakanth Pagadala2, David M. Mueller1

This review summarizes the current understanding of the subunit composition of the ATP synthase and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The concludes with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

Previous Next
, August 1, 2016

Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation.

Saul M. Honigberg

Diploid budding yeast (Saccharomyces cerevisiae) can adopt one of several alternative differentiation fates in response to nutrient limitation, and each of these fates provides distinct biological functions. When different strain backgrounds are taken into account, these various fates occur in response to similar environmental cues, are regulated by the same signal transduction pathways, and share many of the same master regulators. I propose that the relationships between fate choice, environmental cues and signaling pathways are not Boolean, but involve graded levels of signals, pathway activation and master-regulator activity.

, May 1, 2016

Phosphatidylthreonine: An exclusive phospholipid regulating calcium homeostasis and virulence in a parasitic protist

Ruben D. Arroyo-Olarte and Nishith Gupta

This article comments on work published by Kuchipudi et al. (Microbial Cell, 2016), which describes the role of phohsphatidylthreonine in the regulation of calcium homeostasis and virulence in the protozoan parasite Toxoplasma gondii.

, April 13, 2016

Non-genetic impact factors on chronological lifespan and stress resistance of baker’s yeast

Michael Sauer and Diethard Mattanovich

This article comments on work published by Bisschops et al. (Microbial Cell, 2015), which illustrates how important the choice of the experimental setup is and how culture conditions influcence cellular aging and survival in biotechnological processes.

, April 4, 2016

What’s old is new again: yeast mutant screens in the era of pooled segregant analysis by genome sequencing

Chris Curtin and Toni Cordente

This article comments on work published by Den Abt et al. (Microbial Cell, 2016), which identified genes involved in ethyl acetate formation in a yeast mutant screen based on a new approach combining repeated rounds of chemical mutagenesis and pooled segregant analysis by whole genome sequencing.

, March 17, 2016

The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract

Eduardo Lopez-Medina1 and Andrew Y. Koh2

This article comments on work published by Lopez-Medina et al. (PLoS Pathog, 2015) and Fan et al. (Nat Med, 2015), which utilize an “artificial” niche, the antibiotic-treated gut with concomitant pathogenic microbe expansion, to gain insight in bacterial-fungal interactions in clinically common scenarios.

, March 6, 2016

Gearing up for survival – HSP-containing granules accumulate in quiescent cells and promote survival

Ruofan Yu and Weiwei Dang

This article comments on work published by Lee et al. (Microbial Cell, 2016), which reports that distinct granules are formed in quiescent and non-quiescent cells, which determines their respective cell fates.

, March 3, 2016

Yeast screening platform identifies FDA-approved drugs that reduce Aβ oligomerization

Triana Amen1,2 and Daniel Kaganovich1

This article comments on work published by Park et al. (Microbial Cell, 2016), which discovered a number of small molecules capable of modulating Aβ aggregation in a yeast model.

November 26, 2015

Groupthink: chromosomal clustering during transcriptional memory

Kevin A. Morano

In this article, the authors comment on the study “NO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering.” by Brickner et al. (Microbial Cell, 2015), discussing the importance and molecular mechanisms of chromosomal clustering during transcriptional memory.

November 26, 2015

Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration

Amit Shrestha1, 2 and Lynn A. Megeney1, 2, 3

Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. This article discusses the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.