Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans
This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.
Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes
This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.
Luminal acetylation of microtubules is not essential for Plasmodium berghei and Toxoplasma gondii survival
Acetylation of α-tubulin at lysine 40 is not essential for cytoskeletal stability in Plasmodium berghei or Toxoplasma gondii, suggesting redundancy and plasticity in microtubule regulation in these parasites.
The dual-site agonist for human M2 muscarinic receptors Iper-8-naphtalimide induces mitochondrial dysfunction in Saccharomyces cerevisiae
S. cerevisiae is a model to study human GPCRs. N-8-Iper, active against glioblastoma via M2 receptor, causes mitochondrial damage in yeast by binding Ste2, highlighting evolutionary conservation of GPCRs.
Integrative Omics reveals changes in the cellular landscape of peroxisome-deficient pex3 yeast cells
To uncover the consequences of peroxisome deficiency, we compared Saccharomyces cerevisiae wild-type with pex3 cells, which lack peroxisomes, employing quantitative proteomics and transcriptomics technologies.
Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans
Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*
This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.
Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes
Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco
This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.
Sir2 regulates selective autophagy in stationary-phase yeast cells
Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim
This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.
Chromosome-condensed G1 phase yeast cells are tolerant to desiccation stress
Zhaojie Zhang1 and Gracie R. Zhang2
The budding yeast Saccharomyces cerevisiae is capable of surviving extreme water loss for a long time. However, less is known about the mechanism of its desiccation tolerance. In this study, we revealed that in an exponential culture, all desiccation tolerant yeast cells were in G1 phase and had condensed chromosomes. (…)
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its first variants in fourplex real-time quantitative reverse transcription-PCR assays
Mathieu Durand1, Philippe Thibault1, Simon Lévesque2,3, Ariane Brault4, Alex Carignan2, Louis Valiquette2, Philippe Martin2 and Simon Labbé4
The early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is required to identify and isolate contagious patients to prevent further transmission of SARS-CoV-2. In this study, we present a multitarget real-time TaqMan reverse transcription PCR (rRT-PCR) assay for the quantitative detection of SARS-CoV-2 and some of its circulating variants harboring mutations that give the virus a selective advantage. Seven different primer-probe sets that included probes containing locked nucleic acid (LNA) nucleotides were designed to amplify specific wild-type and mutant sequences in Orf1ab, Envelope (E), Spike (S), and Nucleocapsid (N) genes (…)
Forced association of SARS-CoV-2 proteins with the yeast proteome perturb vesicle trafficking
Cinzia Klemm1,#, Henry Wood1,#, Grace Heredge Thomas1,#, Guðjón Ólafsson1,2, Mara Teixeira Torres1 and Peter H. Thorpe1
This work demonstrates that the yeast Synthetic Physical Interactions method is a rapid way to identify potential functions of ectopic viral proteins.
Airborne bacteria in show caves from Southern Spain
Irene Dominguez-Moñino1, Valme Jurado1, Miguel Angel Rogerio-Candelera1, Bernardo Hermosin1 and Cesareo Saiz-Jimenez1
This study analyzes the factors conditioning the diversity of airborne bacteria recorded in three Andalusian show caves, subjected to different managements.
Landscapes and bacterial signatures of mucosa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel disease
Nayaret Chamorro1,#, David A. Montero1,2,#, Pablo Gallardo3, Mauricio Farfán3, Mauricio Contreras4, Marjorie De la Fuente2, Karen Dubois2, Marcela A. Hermoso2, Rodrigo Quera5,6, Marjorie Pizarro-Guajardo7,8,9, Daniel Paredes-Sabja7,8,9, Daniel Ginard10, Ramon Rosselló-Móra11 and Roberto Vidal1,8,12
This study investigates the landscapes and alterations of mucosa-associated intestinal microbiota in patients with inflammatory bowel diseases, which cause chronic inflammation of the gut, including ulcerative colitis and Crohn’s disease.
Genome, transcriptome and secretome analyses of the antagonistic, yeast-like fungus Aureobasidium pullulans to identify potential biocontrol genes
Maria Paula Rueda-Mejia1, Lukas Nägeli1, Stefanie Lutz2, Richard D. Hayes3, Adithi R. Varadarajan2, Igor V. Grigoriev3,4, Christian H. Ahrens2,5 and Florian M. Freimoser1
This study highlights the value of a sequential approach starting with genome mining and consecutive transcriptome and secretome analyses in order to identify a limited number of potential target genes for detailed, functional analyses in Aureobasidium pullulans.
Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model
Catherine C. Neto1,2,#, Benedikt M. Mortzfeld3,#, John R. Turbitt1,2, Shakti K. Bhattarai3, Vladimir Yeliseyev4, Nicholas DiBenedetto4, Lynn Bry4 and Vanni Bucci2,3
This study investigates the effect of a water-soluble, proanthocyanidin-rich cranberry juice extract on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model.
Dry biocleaning of artwork: an innovative methodology for Cultural Heritage recovery?
Giancarlo Ranalli1, Pilar Bosch-Roig2, Simone Crudele1, Laura Rampazzi3,4, Cristina Corti3 and Elisabetta Zanardini5
This work proposes an innovative methodology based on applied biotechnology for the recovery of altered stonework: the “dry biocleaning”, which envisages the use of dehydrated microbial cells without the use of free water or gel-based matrices.
Protein aggregation triggers a declining libido in elder yeasts that still have a lust for life
Fabrice Caudron
This article comments on work published by Schlissel et al (Science 2017), showing that aging in yeast does not lead to the expected loss of heterochromatin silencing due to Sir2 inactivity, but rather to reduced mating pheromone sensitivity caused by the aggregation of the RNA-binding protein Whi3, which can be reversed by eliminating Whi3’s polyglutamine domain.
Post-transcriptional regulation of ribosome biogenesis in yeast
Isabelle C. Kos-Braun and Martin Koš
Microorganisms adapt to environmental changes by regulating their metabolism, and one key survival strategy is to decrease energy use during adverse conditions by halting ribosome production, with recent findings showing yeast can switch between pre-rRNA processing pathways in response to environmental shifts, adding complexity to ribosome biogenesis regulation.
Placeholder factors in ribosome biogenesis: please, pave my way
Francisco J. Espinar-Marchena, Reyes Babiano1 and Jesús de la Cruz
In ribosome synthesis, “placeholder” factors are crucial trans-acting elements that regulate the timing and assembly of ribosomal proteins, ensuring speed and accuracy in this intricate process by preventing premature interactions and guiding the proper formation of functional ribosomal subunits.
Insights from the redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains
Hong Li1,2, Tiandi Yang3, Tingting Liao2, Aleksandra W. Debowski2,4, Hans-Olof Nilsson2, Stuart M. Haslam3, Anne Dell3, Keith A. Stubbs4, Barry J. Marshall2 and Mohammed Benghezal2,5
This article comments on work published by Li et al. (PloS Pathog, 2017), focusing on Helicobacter pylori infections. They are mostly asymptomatic but can lead to serious conditions, and H. pylori lipopolysaccharide (LPS) is crucial for colonization and persistence, making the study of its structure and biosynthesis pathway vital for understanding pathogenesis and developing treatments.
Evading plant immunity: feedback control of the T3SS in Pseudomonas syringae
Christopher Waite1, Jörg Schumacher1, Milija Jovanovic1, Mark Bennett1 and Martin Buck1
This article comments on work published by Waite et al. (mBio, 2017), which indicates that a negative autogenous control mechanism, where the sigma factor HrpL represses its own expression, permits the plant pathogen Pseudomonas syringae to fine-tune its type III secretion system, potentially reducing the elicitation of plant immunity and enhancing its ability to cause disease.
Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity
Facundo Rodriguez Ayala, Carlos Bauman, Sebastián Cogliati, Cecilia Leñini, Marco Bartolini and Roberto Grau
This article comments on work published by Donato et al. (Nat Commun, 2017), which reveals that the probiotic Bacillus subtilis extends the lifespan of Caenorhabditis elegans via mechanisms including the formation of biofilms and the production of signaling molecules like NO and CSF, suggesting a potential pathway through insulin-like signaling that could impact human longevity and age-related diseases.
Chlamydia trachomatis’ struggle to keep its host alive
Barbara S. Sixt1-4, Raphael H. Valdivia5, Guido Kroemer1-4,6-7
This article comments on work published by Sixt et al. (Cell Host Microbe, 2016), which analyzed a CpoS-deficient mutant yielding unique insights into the nature of cell-autonomous defense responses against Chlamydia.
The emerging role of complex modifications of tRNALysUUU in signaling pathways
Patrick C. Thiaville1,2,3,4 and Valérie de Crécy-Lagard2,4
This comment discusses the article “Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling” by Scheidt et al (Microbial Cell, 2014).
Only functional localization is faithful localization
Roland Lill1,2,3
This article comments on work published by Peleh et al. (Microbial Cell 2014), which analyzes the localization of Dre2 in Saccharomyces cerevisiae.
One cell, one love: a journal for microbial research
Didac Carmona-Gutierrez1, Guido Kroemer2-6 and Frank Madeo1
In this inaugural article of Microbial Cell, we highlight the importance of microbial research in general and the journal’s intention to serve as a publishing forum that supports and enfolds the scientific diversity in this area as it provides a unique, high-quality and universally accessible source of information and inspiration.
What’s the role of autophagy in trypanosomes?
Katherine Figarella1 and Néstor L. Uzcátegui1,2
This article comments on Proto et al. (Microbial Cell, 2014), who report first insights into the molecular mechanism of autophagy in African trypanosomes by generating reporter bloodstream form cell lines.
Microbial Cell
is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.
you can trust
Can’t find what you’re looking for?
You can browse all our issues and published articles here.
FAQs
Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.
The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer
Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.
Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:
2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.
2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.
2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.
2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.
2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).
2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.
2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.
Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.
Metabolic pathways further increase the complexity of cell size control in budding yeast
Jorrit M. Enserink
This article comments on work published by Soma et al. (Microbial Cell, 2014), which teased apart the effect of metabolism and growth rate on setting of critical cell size in Saccharomyces cerevisiae.