, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, May 20, 2019

Functional link between mitochondria and Rnr3, the minor catalytic subunit of yeast ribonucleotide reductase

Isaac Corcoles-Saez1, Jean-Luc Ferat2, Michael Costanzo3, Charles M. Boone3 and Rita S. Cha1

This article shows that the carbon source affects the abundance of ribonucleotide reductase (RNR) subunits in yeast, with a novel Mec1 signaling axis regulating Rnr3 independently of known DNA damage response pathways, and reveals Rnr3’s unexpected role in mitochondrial function.

, March 15, 2019

Mitochondria-Associated Membranes (MAMs) are involved in Bax mitochondrial localization and cytochrome c release

Alexandre Légiot1, Claire Céré1, Thibaud Dupoiron1, Mohamed Kaabouni1, Nadine Camougrand1 and Stéphen Manon1

This study investigated the role of Mitochondria-Associated Membranes (MAMs) in the regulation of apoptosis by analyzing the localization and function of the pro-apoptotic protein Bax in yeast, finding that disruption of MAMs by deletion of the MDM34 gene affects Bax’s mitochondrial localization and the release of cytochrome c.

, March 11, 2019

Chlamydia pneumoniae is present in the dental plaque of periodontitis patients and stimulates an inflammatory response in gingival epithelial cells

Cássio Luiz Coutinho Almeida-da-Silva1, Tamer Alpagot2, Ye Zhu1, Sonho Sierra Lee3,4, Brian P. Roberts5, Shu-Chen Hung1, Norina Tang1,2 and David M. Ojcius1

This study found that Chlamydia pneumoniae is present more frequently in the dental plaque of individuals with periodontal disease, can invade human gingival epithelial cells causing inflammatory responses, and may therefore be a contributing factor to periodontal disease and a potential indicator of risk.

, January 24, 2019

Simultaneous profiling of sexually transmitted bacterial pathogens, microbiome, and concordant host response in cervical samples using whole transcriptome sequencing analysis

Catherine M. O’Connell1,#, Hayden Brochu2,#, Jenna Girardi1, Erin Harrell2, Aiden Jones2, Toni Darville1, Arlene C. Seña3 and Xinxia Peng2,4

This study used total RNA sequencing to analyze cervical samples from women at high risk for STIs, revealing that host transcriptional profiles can be linked to microbiome composition and STI infections, with implications for advancing our understanding of PID and identifying potential biomarkers.

, January 22, 2019

Genome-wide analysis of yeast expression data based on a priori generated co-regulation cliques

Siyuan Sima1, Lukas Schmauder1 and Klaus Richter1

The study demonstrates the use of predefined genome-wide expression cliques, derived from extensive microarray data, to effectively analyze and visualize the complete gene expression response across various cellular conditions in yeast.

, November 12, 2018

A humanized yeast-based toolkit for monitoring phosphatidylinositol 3-kinase activity at both single cell and population levels

Julia María Coronas-Serna1, Teresa Fernández-Acero1, María Molina1 and Víctor J. Cid1

In this study, a humanized yeast system for functional studies on higher eukaryotic Phosphatidylinositol 3-kinase (PI3K) was developed by restricting PI3K activity in yeast to specific plasma membrane microdomains, utilizing engineered reporters to monitor activity at a single-cell level and employing novel tools to study the performance of yeast plasma membrane (PM) microdomain-directed PI3K, revealing location-specific effects on yeast growth and endocytosis.

, October 31, 2018

A chemical genetic screen reveals a role for proteostasis in capsule and biofilm formation by Cryptococcus neoformans

François L. Mayer1, Eddy Sánchez-León1, James W. Kronstad1

This study demonstrates that the bipolar disorder drug lithium inhibits the formation of key virulence factors, biofilm, and polysaccharide capsule, in Cryptococcus neoformans by dysregulating the ubiquitin/proteasome system, shedding light on the impact of lithium and providing insights into potential alternative pharmaceutical approaches for combating this fungal pathogen.

, October 29, 2018

Nutritional and meiotic induction of transiently heritable stress resistant states in budding yeast

Heldder Gutierrez1, Bakhtiyar Taghizada1, and Marc D. Meneghini1

This study demonstrates that transient exposures to environmental stresses induce persistent states of elevated stress resistance in yeast cells, termed cellular memory, suggesting a form of epigenetic inheritance, and shows that this phenomenon occurs not only in meiotically produced spores but also in haploid cells subjected to glucose withdrawal, adding new insights into the developmentally and nutritionally induced cellular memory.

, October 16, 2018

Specific mutations in the permease domain of septal protein SepJ differentially affect functions related to multicellularity in the filamentous cyanobacterium Anabaena

Félix Ramos-León1, Sergio Arévalo1, Vicente Mariscal1 and Enrique Flores1

In this study, the multifunctional roles of the SepJ protein in the multicellular function of the Anabaena filament were investigated, revealing that specific amino acids and stretches within the protein are essential for the formation of long filaments, heterocyst differentiation, and intercellular communication, shedding light on the structure and diverse functions of SepJ in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

Previous Next
August 22, 2015

Peering into the ‘black box’ of pathogen recognition by cellular autophagy systems

Shu-chin Lai# and Rodney J Devenish

Autophagy is an intracellular process that plays an important role in protecting eukaryotic cells and maintaining intracellular homeostasis. This review summarises the available evidence regarding the specific recognition of invading pathogens by which they are targeted into host autophagy pathways.

August 20, 2015

Per aspera ad astra: When harmful chromosomal translocations become a plus value in genetic evolution. Lessons from Saccharomyces cerevisiae

Valentina Tosato and Carlo V. Bruschi

This review will focus on chromosomal translocations (either spontaneous or induced) in budding yeast. Indeed, very few organisms tolerate so well aneuploidy like Saccharomyces, allowing in depth studies on chromosomal numerical aberrations. The phenomenon of post-translocational adaptation (PTA) is discussed, providing some new unpublished data and proposing the hypothesis that translocations may drive evolution through adaptive genetic selection.

August 13, 2015

Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

Audrey Bernut1,#, Claudine Belon1, Chantal Soscia2, Sophie Bleves2, Anne-Béatrice Blanc-Potard1

This article discusses the article “A macrophage subversion factor is shared by intracellular and extracellular pathogens” by Belon et al. (PLoS Pathogens 11(6): e1004969, 2015).

July 30, 2015

The role of transcriptional ‘futile cycles’ in autophagy and microbial pathogenesis

Guowu Hu1, Travis McQuiston1, Amélie Bernard2, Yoon-Dong Park1, Jin Qiu1, Ali Vural3, Nannan Zhang1, Scott R. Waterman1, Nathan H. Blewett4, Timothy G. Myers5, John H. Kehrl3, Gulbu Uzel1, Daniel J. Klionsky2 and Peter R. Williamson1

Eukaryotic cells utilize macroautophagy (hereafter autophagy) to recycle cellular materials during nutrient stress. Target of rapamycin (Tor) is a central regulator of this process, acting by post-translational mechanisms, phosphorylating preformed autophagy-related (Atg) proteins to repress autophagy during log-phase growth. A role for this regulatory process in fungal virulence was further demonstrated by showing that overexpression of the Dcp2-associated mRNA-binding protein Vad1 in the AIDS-associated pathogen Cryptococcus neoformans results in constitutive repression of autophagy even under starvation conditions as well as attenuated virulence in a mouse model. In summary, Tor-dependent post-transcriptional regulation of autophagy plays a key role in the facilitation of microbial pathogenesis.

July 30, 2015

The many facets of homologous recombination at telomeres

Clémence Claussin and Michael Chang

The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms…

July 27, 2015

From the baker to the bedside: yeast models of Parkinson’s disease

Regina Menezes1,2, Sandra Tenreiro3,5, Diana Macedo2, Cláudia N. Santos1,2, Tiago Fleming Outeiro4,5,6

The baker’s yeast Saccharomyces cerevisiae has been extensively explored for our understanding of fundamental cell biology processes highly conserved in the eukaryotic kingdom. This review provides a brief historical perspective on the emergence of yeast as an experimental model and on how the field evolved to exploit the potential of the model for tackling the intricacies of various human diseases. In particular, the authors focus on existing yeast models of the molecular underpinnings of Parkinson’s disease (PD), focusing primarily on the central role of protein quality control systems.

July 25, 2015

Why are essential genes essential? – The essentiality of Saccharomyces genes

Zhaojie Zhang and Qun Ren

Essential genes are defined as required for the survival of an organism or a cell. This article reviews and analyzes the levels of essentiality of the Saccharomyces cerevisiae genes and groups the genes into four categories: (1) Conditional essential: essential only under certain circumstances or growth conditions; (2) Essential: required for survival under optimal growth conditions; (3) Redundant essential: synthetic lethal due to redundant pathways or gene duplication; and (4) Absolute essential: the minimal genes required for maintaining a cellular life under a stress-free environment. The essential and non-essential functions of the essential genes are further analyzed.

July 24, 2015

Membrane depolarization-triggered responsive diversification leads to antibiotic tolerance

Natalie Verstraeten, Wouter Joris Knapen, Maarten Fauvart, Jan Michiels

In this article, the authors discuss the article “Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance”, Verstraeten et al., Mol. Cell 2015 Jul 2; 59 (1): 9-21.

July 6, 2015

Evolutionary rewiring of bacterial regulatory networks

Tiffany B. Taylor1,*, Geraldine Mulley1, Liam J. McGuffin1, Louise J. Johnson1, Michael A. Brockhurst2, Tanya Arseneault1,3, Mark W. Silby4 and Robert W. Jackson1,5

Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. This article discusses Taylor, et al. Science (2015), 347(6225), reporting mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but which come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.

Previous Next
, November 21, 2019

Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1

Estéfani García-Ríos1 and José Manuel Guillamón1

This article discusses the importance of understanding sulfite resistance in Saccharomyces cerevisiae due to its use in winemaking and the potential role of the transcription factor Com2. While the SSU1 gene and its activity have been correlated with sulfite tolerance, the work by Lage et al. (2019) indicates that Com2 might control a large percentage of the genes activated by SO2 and contribute to the yeast’s protective response, offering new insights into the molecular factors influencing this oenological trait.

Targeting GATA transcription factors – a novel strategy for anti-aging interventions?

Andreas Zimmermann1, Katharina Kainz1,2, Sebastian J. Hofer1,3, Maria A. Bauer1, Sabrina Schroeder1, Jörn Dengjel4, Federico Pietrocola5, Oliver Kepp6-9, Christoph Ruckenstuhl1, Tobias Eisenberg1,3,10,11, Stephan J. Sigrist12, Frank Madeo1,3,10, Guido Kroemer6-9, 13-15 and Didac Carmona-Gutierrez1

This article comments on work published by Carmona-Gutierrez et al. (Nat Commun., 2019), which identified a natural compound, 4,4′-dimethoxychalcone, inducing autophagy and prolonging lifespan in different organisms through a mechanism that involves GATA transcription factors.

, January 21, 2019

In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles

Miroslav Oborník 1,2

This In the Pit article argues that the naming conventions for biological entities influence research perspectives and methodologies, advocating for mitochondria and plastids to be classified and named as bacteria due to their endosymbiotic origins, with potential implications for our understanding of bacterial prevalence, definitions of the microbiome and multicellularity, and the concept of endosymbiotic domestication.

, January 21, 2019

What’s in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts

Ansgar Gruber1

This In the Pit article suggests redefining the relationship between hosts and endosymbionts, like mitochondria and plastids, as a single species based on “sexual symbiont integration,” the loss of independent speciation, and congruence in genetic recombination and population sizes, rather than solely on historic classifications or structural properties.

, May 7, 2018

Microbial wars: competition in ecological niches and within the microbiome

Maria A. Bauer1, Katharina Kainz1, Didac Carmona-Gutierrez1 and Frank Madeo1,2

In this Editorial Bauer et al. provide a brief overview on microbial competition and discuss some of its roles and consequences that directly affect humans.

, December 6, 2017

Exploring the mechanism of amebic trogocytosis: the role of amebic lysosomes

Allissia A. Gilmartin1 and William A. Petri, Jr1,2,3

In this article, the authors comment on the study “Inhibition of Amebic Lysosomal Acidification Blocks Amebic Trogocytosis and Cell Killing” by Gilmartin et al. (MBio, 2017), discussing the the role of amebic lysosomes in Trogocytosis, the intracellular transfer of fragments of cell material.

, October 24, 2017

Uncovering the hidden: complexity and strategies for diagnosing latent tuberculosis

Mario Alberto Flores-Valdez

This editorial postulates that advanced proteomic and transcriptomic techniques are evolving and may enhance the detection of latent tuberculosis, thereby distinguishing true M. tuberculosis infections from other conditions, which is vital for controlling potential reactivation and transmission.

, August 6, 2017

The Yin & Yang of Mitochondrial Architecture – Interplay of MICOS and F1Fo-ATP synthase in cristae formation

Heike Rampelt1 and Martin van der Laan2

This Editorial posits that mitochondrial cristae architecture is shaped by the interplay of MICOS and ATP synthase, with a recent study illuminating their roles in cristae formation and maintenance.

, March 27, 2017

When a ribosomal protein grows up – the ribosome assembly path of Rps3

Brigitte Pertschy

This article comments on two papers by Mitterer et al., which followed yeast protein Rps3, highlighting the sophisticated mechanisms for protein protection, nuclear transport, and integration into pre-ribosomal particles for final assembly with 40S subunits.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.