, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 7, 2018

Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor

Damien J. Cabral1, Swathi Penumutchu1, Colby Norris1,2, Jose Ruben Morones-Ramirez3,4 and Peter Belenky1

Localized and systemic fungal infections caused by Candida albicans can lead to significant mortality and morbidity. Here, Cabral et al. show that E. coli produces a soluble factor that kills C. albicans in a magnesium-dependent fashion such that depletion of available magnesium is essential for toxicity.

, February 19, 2018

Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK

Nazif Maqani1,#, Ryan D. Fine1,#, Mehreen Shahid1, Mingguang Li1,2, Elisa Enriquez-Hesles1 and Jeffrey S. Smith1

Chronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Here, Magani et al. identified specific downstream SNF1 targets responsible for CLS extension during CR.

, February 18, 2018

Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells

Maxence de Taffin de Tilques1,$, Jean-Paul Lasserre1,$, François Godard1, Elodie Sardin1, Marine Bouhier1, Marina Le Guedard2,3, Roza Kucharczyk4, Patrice X. Petit5, Eric Testet2, Jean-Paul di Rago1, Déborah Tribouillard-Tanvier1,#

Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). Here, de Taffin de Tilques et al. describe that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of Barth Syndrome (BTHS) and identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.

, February 12, 2018

Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces

Dino van Dissel1, Joost Willemse1, Boris Zacchetti1, Dennis Claessen1, Gerald B. Pier2, Gilles P. van Wezel1

In this article van Dissel et al. describe new insights to allow better control of liquid-culture morphology of streptomycetes, which may be harnessed to improve growth and industrial exploitation of these highly versatile natural product and enzyme producers.

, January 30, 2018

Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging

Nadia G Rampello1, Maria Stenger2, Benedikt Westermann2, Heinz D Osiewacz1

In aerobic organisms, mitochondrial F1Fo-ATP-synthase is the major site of ATP production. Here, Rampello et al. report on the role of the two dimer assembly factors PaATPE and PaATPG of the aging model Podospora anserina validating a model that links mitochondrial membrane remodeling to aging and identify specific molecular components triggering this process.

, January 26, 2018

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

Esther Gamero-Sandemetrio1, Lucía Payá-Tormo1, Rocío Gómez-Pastor1,3, Agustín Aranda1,2 and Emilia Matallana1,2

Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. Here, Gamero-Sandemetrio et al. present findings that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after active dry yeast (ADY) production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

, January 16, 2018

Molecular signature of the imprintosome complex at the mating-type locus in fission yeast

Célia Raimondi1, Bernd Jagla2, Caroline Proux3, Hervé Waxin4, Serge Gangloff1, Benoit Arcangioli1

Genetic and molecular studies have indicated that an epigenetic imprint at mat1, the sexual locus of fission yeast, initiates mating type switching. Here, Raimondi et al. characterized the recruitment of early players of mating type switching at the mat1 region and suggest a nucleoprotein protective structure defined as imprintosome.

, January 14, 2018

Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β

Mary-Anne Hartley1,¶, Remzi O. Eren1,¶, Matteo Rossi1, Florence Prevel1, Patrik Castiglioni1, Nathalie Isorce1, Chantal Desponds1, Lon-Fye Lye2, Stephen M. Beverley2, Stefan K. Drexler1,&, Nicolas Fasel1,&

The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses mediated by Toll-Like-Receptor-3 (TLR3). Here, Hartely et al. investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. They postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.

, January 13, 2018

A novel system to monitor mitochondrial translation in yeast

Tamara Suhm1, Lukas Habernig2, Magdalena Rzepka1, Jayasankar Mohanakrishnan Kaimal3, Claes Andréasson3, Sabrina Büttner2,3 and Martin Ott1

In this study Suhm et al. present a novel system to monitor mitochondrial translation by detection of mitochondrial GFP-translation through fluorescence microscopy and flow cytometry in functional mitochondria. This novel tool allows the investigation of the function and regulation of mitochondrial translation during stress signaling, aging and mitochondrial biogenesis.

Previous Next
, March 31, 2016

When and where? Pathogenic Escherichia coli differentially sense host D-serine using a universal transporter system to monitor their environment

James P. R. Connolly and Andrew J. Roe

This article comments on work published by Connolly et al. (PLoS Pathog, 2016), which describes the discovery of a functional and previously uncharacterized D-serine uptake system in E. coli.

, March 27, 2016

Signaling pathways and posttranslational modifications of tau in Alzheimer’s disease: the humanization of yeast cells

Jürgen J. Heinisch1 and Roland Brandt2

In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. Substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. We give an overview on common modifications as they occur in tau during AD and discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells.

, March 16, 2016

The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

Liselot Dewachter1, Natalie Verstraeten1, Maarten Fauvart1,2 and Jan Michiels1

This article comments on work published by Dewachter et al. (mBio, 2015), which identified a programmed cell death mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE.

, March 9, 2016

Bactericidal antibiotics induce programmed metabolic toxicity

Aislinn D. Rowan, Damien J. Cabral and Peter Belenky

This article comments on work published by Lobritz et al. (PNAS, 2015), which demonstrates that bactericidal antibiotics induce metabolic perturbations that are linked to and required for bactericidal antibiotic toxicity.

, March 9, 2016

Control of the gut microbiome by fecal microRNA

Shirong Liu and Howard L. Weiner

This article comments on work published by Liu et al. (Cell Host & Microbe, 2016), which identifies miRNAs in gut lumen and feces of both mice and humans that were able to enter bacteria, specifically regulate bacterial gene transcripts and affect bacterial growth thereby regulating the gut microbiome.

, February 23, 2016

Mitochondrial regulation of cell death: a phylogenetically conserved control

Lorenzo Galluzzi1,2,3,4,5, Oliver Kepp1,2,3,4,6 and Guido Kroemer1,2,3,4,6,7,8

Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all) regulated variants of cellular demise. In this short review, the authors discuss the differential implication of mitochondria in the major forms of regulated cell death.

, February 22, 2016

Mek1/Mre4 is a master regulator of meiotic recombination in budding yeast

Nancy M. Hollingsworth

This article comments on work published by Chen et al. (PLoS BIol, 2015), showing that the meiosis specific kinase Mek1 indirectly regulates the crossover/non-crossover decision between homologs as well as genetic interference and suggests Mek1 to be a “master regulator” of meiotic recombination in budding yeast.

, February 19, 2016

Shaping meiotic chromosomes with SUMO: a feedback loop controls the assembly of the synaptonemal complex in budding yeast

Hideo Tsubouchi1, Bilge Argunhan1 and Tomomi Tsubouchi2

This article comments on work published by Leung et al. (J Cell Biol, 2015), which shows that the formation of the meiosis-specific synaptonemal complex is controlled through SUMOylation of a regulator required for the assembly of transverse filaments, implicating the involvement of a positive feedback loop in the control of synaptonemal complex assembly.

, January 18, 2016

Learning epigenetic regulation from mycobacteria

Sanjeev Khosla1, Garima Sharma1,2 and Imtiyaz Yaseen1,2

This article comments on work published by Koshla et al. (Nat Commun, 2015), which shows that pathogenic Mycobacterium tuberculosis has evolved strategies to hijack the epigenetic regulation of host transcripton for its own survival.

Previous Next
January 4, 2015

The emerging role of complex modifications of tRNALysUUU in signaling pathways

Patrick C. Thiaville1,2,3,4 and Valérie de Crécy-Lagard2,4

This comment discusses the article “Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling” by Scheidt et al (Microbial Cell, 2014).

, August 22, 2014

Metabolic pathways further increase the complexity of cell size control in budding yeast

Jorrit M. Enserink

This article comments on work published by Soma et al. (Microbial Cell, 2014), which teased apart the effect of metabolism and growth rate on setting of critical cell size in Saccharomyces cerevisiae.

, April 7, 2014

Only functional localization is faithful localization

Roland Lill1,2,3

This article comments on work published by Peleh et al. (Microbial Cell 2014), which analyzes the localization of Dre2 in Saccharomyces cerevisiae.

, April 7, 2014

Metabolites in aging and autophagy

Sabrina Schroeder1,#, Andreas Zimmermann1,#, Didac Carmona-Gutierrez1, Tobias Eisenberg1, Christoph Ruckenstuhl1, Aleksandra Andryushkova1, Tobias Pendl1, Alexandra Harger1,2 and Frank Madeo1

This article analyzes the implications of specific metabolites in aging and autophagy with special emphasis on polyamine metabolism.

, January 5, 2014

One cell, one love: a journal for microbial research

Didac Carmona-Gutierrez1, Guido Kroemer2-6 and Frank Madeo1

In this inaugural article of Microbial Cell, we highlight the importance of microbial research in general and the journal’s intention to serve as a publishing forum that supports and enfolds the scientific diversity in this area as it provides a unique, high-quality and universally accessible source of information and inspiration.

, January 4, 2014

What’s the role of autophagy in trypanosomes?

Katherine Figarella1 and Néstor L. Uzcátegui1,2

This article comments on Proto et al. (Microbial Cell, 2014), who report first insights into the molecular mechanism of autophagy in African trypanosomes by generating reporter bloodstream form cell lines.

Previous

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.