, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, December 28, 2017

Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes

Matthew J Hayes1, Vineet Choudhary2, Namrata Ojha2, John JH Shin3, Gil-Soo Han4, George M. Carman4, Christopher JR Loewen3, William A Prinz2 and Timothy P Levine1

Fat storage-inducing transmembrane (FIT or FITM) proteins have been implicated in the partitioning of triacylglycerol to lipid droplets and the budding of lipid droplets from the ER. Saccharomyces cerevisiae has two FITM homologues and the presented results suggest that Scs3p and Yft2p as well as FITMs in general are lipid phosphatase/phosphotransferase (LPT) enzymes involved in an as yet unknown critical step in phospholipid metabolism.

, December 6, 2017

Yeast quiescence exit swiftness is influenced by cell volume and chronological age

Damien Laporte1, Laure Jimenez1, Laëtitia Gouleme1, Isabelle Sagot1

Quiescence exit swiftness is crucial not only for micro-organisms in competition for an environmental niche, such as yeast, but also for the maintenance of tissue homeostasis in multicellular species. Here, Laporte et al. explore the effect of replicative and chronological age on Saccharomyces cerevisiae quiescence exit efficiency. Overall, their data illustrate that the quiescent state is a continuum evolving with time, early and deep quiescence being distinguishable by the cell’s proficiency to re-enter the proliferation cycle.

, December 5, 2017

A versatile plasmid system for reconstitution and analysis of mammalian ubiquitination cascades in yeast

Rossella Avagliano Trezza1,#, Janny van den Burg1, Nico van den Oever1 and Ben Distel1,2

In this article Avagliano Trezza et al. describe a versatile vector system that allows the reconstitution of specific ubiquitination cascades in the model eukaryote Saccharomyces cerevisae (baker’s yeast) that provides a versatile tool to study complex post-translational modifications in a cellular setting.

, December 1, 2017

Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae : biophysical mechanisms and implications for acetic acid tolerance

Lina Lindahl1, Samuel Genheden2, Fábio Faria-Oliveira1, Stefan Allard3, Leif A. Eriksson2, Lisbeth Olsson1, Maurizio Bettiga1,4

Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.

, November 30, 2017

Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin

Julia Ring1, Patrick Rockenfeller1, 3, Claudia Abraham1, Jelena Tadic1, Michael Poglitsch1, Katherina Schimmel1, 4, Julia Westermayer1, Simon Schauer1, Bettina Achleitner1, Christa Schimpel1, 5, Barbara Moitzi1, Gerald N. Rechberger1, 6, Stephan J. Sigrist7, 8, Didac Carmona-Gutierrez1, Guido Kroemer9, 10, 11, 12, 13, 14, 15, Sabrina Büttner1, 16, Tobias Eisenberg1, 2, Frank Madeo1, 2

This article indicates that spartin, a protein linked to hereditary spastic paraplegias, extends yeast lifespan and reduces age-related damage by associating with mitochondria and interacting with key metabolic proteins, implicating energy metabolism in its protective role during aging.

, November 27, 2017

A genome-wide screen for FTY720-sensitive mutants reveals genes required for ROS homeostasis

Kanako Hagihara1, Kanako Kinoshita1, Kouki Ishida1, Shihomi Hojo1, Yoshinori Kameoka1, Ryosuke Satoh1, Teruaki Takasaki1 and Reiko Sugiura1

Fingolimod hydrochloride (FTY720) is an immune modulator for multiple sclerosis that also induces cancer cell apoptosis through reactive oxygen species generation, with a new study using fission yeast uncovering a gene network related to ROS homeostasis as a possible mechanism of FTY720’s toxicity.

, November 22, 2017

Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica

Jannell V. Bazurto1, Stephen P. Dearth2, Eric D. Tague2, Shawn R. Campagna2 and Diana M. Downs1

In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.

, November 20, 2017

The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development

Cletus A. Wezena1, Romy Alisch1, Alexandra Golzmann2, Linda Liedgens1, Verena Staudacher1,3, Gabriele Pradel2 and Marcel Deponte1,3

In this study the authors demonstrate that, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development against the malaria parasite Plasmodium falciparum.

, November 9, 2017

Aminoglycoside resistance profile and structural architecture of the aminoglycoside acetyltransferase AAC(6’)-Im

Clyde A. Smith1, Monolekha Bhattacharya2, Marta Toth2, Nichole K. Stewart2 and Sergei B. Vakulenko2

AAC(6′)-Im, a monofunctional acetyltransferase, imparts increased resistance to certain aminoglycosides compared to its bifunctional homolog AAC(6′)-Ie, with structural studies revealing differences in substrate binding that explain the discrepancies in their enzymatic activity and resistance profiles.

Previous Next
, August 25, 2025

Gut microbiota and ankylosing spondylitis: current insights and future challenges

Andrei Lobiuc1, Liliana Groppa2, Lia Chislari2, Eugeniu Russu2,3, Marinela Homitchi2,3, Camelia Ciorescu2,3, Sevag Hamamah4, I. Codruta Bran1 and Mihai Covasa1

This review explores the growing role of gut microbiota in AS and its potential to reshape targeted treatment strategies and facilitate development of adjunct therapies to address disease onset and progression.

, May 15, 2025
Advancements in vaginal microbiota, <i>Trichomonas vaginalis</i>, and vaginal cell interactions: Insights from co-culture assays

Advancements in vaginal microbiota, Trichomonas vaginalis, and vaginal cell interactions: Insights from co-culture assays

Fernanda Gomes Cardoso and Tiana Tasca

This review updates co-culture and co-incubation techniques for studying interactions of Lactobacillus spp., representing a pre-dominant member of the healthy vaginal microbiota; Candida spp., the most abundant yeast in the vagina, and T. vaginalis, responsible for the most widespread nonviral STI worldwide.

, April 15, 2025
Influence of cervicovaginal microbiota on <i>Chlamydia trachomatis</i> infection dynamics

Influence of cervicovaginal microbiota on Chlamydia trachomatis infection dynamics

Emily Hand1, Indriati Hood-Pishchany1,2, Toni Darville1,2 and Catherine M. O’Connell2

This review examines the complex interplay between the cervicovaginal microbiome, C. trachomatis infection, and host immune responses, highlighting the role of metabolites such as short-chain and long-chain fatty acids, indole, and iron in modulating pathogen survival and host defenses.

, March 31, 2025
Unveiling the molecular architecture of the mitochondrial respiratory chain of <i>Acanthamoeba castellanii</i>

Unveiling the molecular architecture of the mitochondrial respiratory chain of Acanthamoeba castellanii

Christian Q. Scheckhuber1, Sutherland K. Maciver2 and Alvaro de Obeso Fernandez del Valle1

This review provides a comprehensive overview of the mitochondrial res-piratory chain in A. castellanii, focusing on the key alternative components involved in oxidative phosphorylation and their roles in energy metabolism, stress response, and adaptation to various conditions.

, February 20, 2025
Paving the way for new antimicrobial peptides through molecular de-extinction

Paving the way for new antimicrobial peptides through molecular de-extinction

Karen O. Osiro1, Abel Gil-Ley2, Fabiano C. Fernandes1,3, Kamila B. S. de Oliveira2, Cesar de la Fuente-Nunez4-7, Octavio L. Franco1,2

The advancement of artificial intelligence and molecular de-extinction offers a valuable opportunity not only to discover new antimicrobials but also to provide accurate in silico predictions, thereby shortening the path to addressing the global antibiotic resistance crisis.

, November 11, 2024
Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Shweta Sinha1, Shifu Aggarwal2,3 and Durg Vijai Singh1

This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms.

, August 2, 2024
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts

Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts

Lajos Acs-Szabo, Laszlo-Attila Papp and Ida Miklos

Here we collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.

, July 4, 2024
Characterising glycosaminoglycans in human breastmilk and their potential role in infant health

Characterising glycosaminoglycans in human breastmilk and their potential role in infant health

Melissa Greenwood1,2, Patricia Murciano-Martínez3, Janet Berrington4, Sabine L Flitsch5, Sean Austin2 and Christopher Stewart1

Glycosaminoglycans are bioactive components present in breast milk and play a potential key role in determining infant health yet are overlooked by many contemporary studies. This review explores their relevance, use and characterisation techniques.

, July 3, 2024
Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention

Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention

Juan C Becerra1, Lauren Hitchcock1, Khoa Vu1 and Johannes S Gach1

This review provides an overview of the advancements in HIV- 1-specific broadly neutralizing antibodies and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.

Next
, November 21, 2019

Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1

Estéfani García-Ríos1 and José Manuel Guillamón1

This article discusses the importance of understanding sulfite resistance in Saccharomyces cerevisiae due to its use in winemaking and the potential role of the transcription factor Com2. While the SSU1 gene and its activity have been correlated with sulfite tolerance, the work by Lage et al. (2019) indicates that Com2 might control a large percentage of the genes activated by SO2 and contribute to the yeast’s protective response, offering new insights into the molecular factors influencing this oenological trait.

Targeting GATA transcription factors – a novel strategy for anti-aging interventions?

Andreas Zimmermann1, Katharina Kainz1,2, Sebastian J. Hofer1,3, Maria A. Bauer1, Sabrina Schroeder1, Jörn Dengjel4, Federico Pietrocola5, Oliver Kepp6-9, Christoph Ruckenstuhl1, Tobias Eisenberg1,3,10,11, Stephan J. Sigrist12, Frank Madeo1,3,10, Guido Kroemer6-9, 13-15 and Didac Carmona-Gutierrez1

This article comments on work published by Carmona-Gutierrez et al. (Nat Commun., 2019), which identified a natural compound, 4,4′-dimethoxychalcone, inducing autophagy and prolonging lifespan in different organisms through a mechanism that involves GATA transcription factors.

, January 21, 2019

In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles

Miroslav Oborník 1,2

This In the Pit article argues that the naming conventions for biological entities influence research perspectives and methodologies, advocating for mitochondria and plastids to be classified and named as bacteria due to their endosymbiotic origins, with potential implications for our understanding of bacterial prevalence, definitions of the microbiome and multicellularity, and the concept of endosymbiotic domestication.

, January 21, 2019

What’s in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts

Ansgar Gruber1

This In the Pit article suggests redefining the relationship between hosts and endosymbionts, like mitochondria and plastids, as a single species based on “sexual symbiont integration,” the loss of independent speciation, and congruence in genetic recombination and population sizes, rather than solely on historic classifications or structural properties.

, May 7, 2018

Microbial wars: competition in ecological niches and within the microbiome

Maria A. Bauer1, Katharina Kainz1, Didac Carmona-Gutierrez1 and Frank Madeo1,2

In this Editorial Bauer et al. provide a brief overview on microbial competition and discuss some of its roles and consequences that directly affect humans.

, December 6, 2017

Exploring the mechanism of amebic trogocytosis: the role of amebic lysosomes

Allissia A. Gilmartin1 and William A. Petri, Jr1,2,3

In this article, the authors comment on the study “Inhibition of Amebic Lysosomal Acidification Blocks Amebic Trogocytosis and Cell Killing” by Gilmartin et al. (MBio, 2017), discussing the the role of amebic lysosomes in Trogocytosis, the intracellular transfer of fragments of cell material.

, October 24, 2017

Uncovering the hidden: complexity and strategies for diagnosing latent tuberculosis

Mario Alberto Flores-Valdez

This editorial postulates that advanced proteomic and transcriptomic techniques are evolving and may enhance the detection of latent tuberculosis, thereby distinguishing true M. tuberculosis infections from other conditions, which is vital for controlling potential reactivation and transmission.

, August 6, 2017

The Yin & Yang of Mitochondrial Architecture – Interplay of MICOS and F1Fo-ATP synthase in cristae formation

Heike Rampelt1 and Martin van der Laan2

This Editorial posits that mitochondrial cristae architecture is shaped by the interplay of MICOS and ATP synthase, with a recent study illuminating their roles in cristae formation and maintenance.

, March 27, 2017

When a ribosomal protein grows up – the ribosome assembly path of Rps3

Brigitte Pertschy

This article comments on two papers by Mitterer et al., which followed yeast protein Rps3, highlighting the sophisticated mechanisms for protein protection, nuclear transport, and integration into pre-ribosomal particles for final assembly with 40S subunits.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.