, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, December 2, 2016

The transcription factors ADR1 or CAT8 are required for RTG pathway activation and evasion from yeast acetic acid-induced programmed cell death in raffinose

Luna Laera1,#, Nicoletta Guaragnella1,#, Maša Ždralević1,¶, Domenico Marzulli1, Zhengchang Liu2 and Sergio Giannattasio1

Yeast Saccharomyces cerevisiae grown on glucose undergoes programmed cell death (PCD) induced by acetic acid (AA-PCD), but evades PCD when grown in raffinose. This is due to concomitant relief of carbon catabolite repression (CCR) and activation of mitochondrial retrograde signaling. In this work, we investigated the relationships between the RTG and CCR pathways in the modulation of AA-PCD sensitivity under glucose repression or de-repression conditions. Our data show that simultaneous mitochondrial retrograde pathway activation and SNF1-dependent relief of CCR have a key role in central carbon metabolism reprogramming which modulates the yeast acetic acid-stress response.

, November 5, 2016

The ubiquitin-conjugating enzyme, Ubc1, indirectly regulates SNF1 kinase activity via Forkhead-dependent transcription

Rubin Jiao1, Liubov Lobanova1, Amanda Waldner1, Anthony Fu1, Linda Xiao1, Troy A. Harkness1, and Terra G. Arnason1,2

The SNF1 kinase class of serine/threonine kinases, which includes the AMP-dependent protein kinase (AMPK) in other systems, are of widespread interest because of their important roles in glucose homeostasis, stress resistance, and aging. Our goal was to identify discrete ubiquitin-conjugating enzymes that are involved in SNF1 kinase activity in response to glucose levels and anticipated revealing those which are involved in Snf1-Ub attachment. Here, we report that the cell cycle and stress-related E2, Ubc1, indirectly affects SNF1 kinase activity not through stability, but through upstream events.

, August 30, 2016

Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets

January Weiner 3rd1 and Taco W.A. Kooij2

In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites.

, August 25, 2016

VDAC regulates AAC-mediated apoptosis and cytochrome c release in yeast

Dário Trindade1,2, Clara Pereira3,4, Susana R. Chaves1, Stéphen Manon2, Manuela Côrte-Real1 and Maria João Sousa1

Mitochondrial outer membrane permeabilization is a key event in apoptosis processes leading to the release of lethal factors. In this study, we sought to determine whether Por1p functionally interacts with ADP/ATP carrier (AAC) proteins, as well as its contribution to cytochrome c release and yeast apoptosis induced by acetic acid treatment. Our data indicate that Por1p may regulate cell survival by acting as a negative regulator of AAC proteins in the apoptotic cascade.

, July 26, 2016

Attenuation of polyglutamine-induced toxicity by enhancement of mitochondrial OXPHOS in yeast and fly models of aging

Andrea L. Ruetenik1,2,3, Alejandro Ocampo1,2,3,¶, Kai Ruan4,5,#, Yi Zhu4,5, Chong Li4,6, R. Grace Zhai1,4,5,6 and Antoni Barrientos1,2,3,5

Defects in mitochondrial biogenesis and function are common in many neurodegenerative disorders, including Huntington’s disease (HD). We could shown that enhancement of mitochondrial biogenesis protects against neurodegeneration in HD yeast and fly models. Our results suggest that therapeutic interventions aiming at the enhancement of mitochondrial respiration and OXPHOS could reduce polyQ toxicity and delay disease onset.

, June 30, 2016

Cox1 mutation abrogates need for Cox23 in cytochrome c oxidase biogenesis

Richard Dela Cruz1,2, Mi-Young Jeong1 and Dennis R. Winge1

Cox23 is a known conserved assembly factor for cytochrome c oxidase, although its role in cytochrome c oxidase (CcO) biogenesis remains unresolved. To gain additional insights into its role, we isolated spontaneous suppressors of the respiratory growth defect in cox23∆ yeast cells. In this report, we describe the isolation of a robust suppressor of the respiratory defect in cox23∆ cells that mapped to the mitochondrial-encoded Cox1 subunit.

, May 15, 2016

Increased spontaneous recombination in RNase H2-deficient cells arises from multiple contiguous rNMPs and not from single rNMP residues incorporated by DNA polymerase epsilon

Anastasiya Epshtein1, Catherine J. Potenski2, and Hannah L. Klein1

Ribonucleotides (rNMPs) can become embedded in DNA from insertion by DNA polymerases, failure to remove Okazaki fragment primers, R-loops that can prime replication, and RNA/cDNA-mediated recombination. We report here that recombination is not stimulated by rNMPs incorporated by the replicative polymerase epsilon. Instead, recombination seems to be stimulated by multiple contiguous rNMPs, which may arise from R-loops or replication priming events.

, May 10, 2016

Construction and evaluation of yeast expression networks by database-guided predictions

Katharina Papsdorf1,#, Siyuan Sima1,#, Gerhard Richter2, Klaus Richter1

DNA-Microarrays are powerful tools to obtain expression data on the genome-wide scale. We set out to define a way to cluster microarray data according to their expressional relationship and to obtain information on the significance of this clustering approach.

Optogenetic monitoring identifies phosphatidylthreonine-regulated calcium homeostasis in Toxoplasma gondii

Arunakar Kuchipudi1, Ruben D. Arroyo-Olarte1, Friederike Hoffmann1, Volker Brinkmann2, Nishith Gupta1, 2

Toxoplasma gondii is an obligate intracellular parasite, which inflicts acute as well as chronic infections in a wide range of warm-blooded vertebrates. Using an optogenetic sensor to monitor subcellular calcium in this model intracellular pathogen we found a novel regulatory function of phosphatidylthreonine in calcium signaling.

Previous Next
, September 13, 2017

Macrophages as drivers of an opportunistic infection

Annette C. Vergunst1, Nazareth Lopez Carranza1, Lili Zhang1,2, Margarida C. Gomes1, Yara Tasrini1,
Annemarie H. Meijer3 and David O’Callaghan1

This article comments on work published by Mesureur et al. (PloS Pathog, 2017), which shows that macrophages are essential for proliferation of B. cenocepacia in the host. This suggests a new paradigm for Bcc infections and urges the development of novel anti-infectious therapies to efficiently disarm these intrinsically antibiotic resistant facultative intracellular pathogens.

, August 31, 2017

A yeast model for the mechanism of the Epstein-Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness

María José Lista1, Rodrigo Prado Martins2, Gaelle Angrand1, Alicia Quillévéré1, Chrysoula Daskalogianni2, Cécile Voisset1, Marie-Paule Teulade-Fichou3, Robin Fåhraeus2 and Marc Blondel1

This article comments on a publication by Lista et al. (Nature Communications, 2017) that uncovered the role of the host cell nucleolin (NCL) in EBNA1 self-limitation of expression via a direct interaction of this protein with G-quadruplexes (G4) formed in GAr-encoding sequence of EBNA1 mRNA.

, August 25, 2017

Exacerbating and reversing lysosomal storage diseases: from yeast to humans

Tamayanthi Rajakumar1, Andrew B. Munkacsi1,2 and Stephen L. Sturley3

This article summarizes the use of yeast models in advancing our understanding of lysosomal storage diseases (LSDs), where they have been instrumental in researching LSD mechanisms, screening for therapeutic compounds, and exploring genetic and gene-environment interactions relevant to diseases like Batten disease, cystinosis, and Niemann-Pick type C disease, as well as their connection to broader health issues such as viral infections and obesity.

, August 13, 2017

Live fast, die fast principle in a single cell of fission yeast

Hidenori Nakaoka1

This article comments on a recent study (Nakaoka and Wakamoto, PLoS Biol, 2017), which developed a microfluidics-based platform to track multiple single cell lineages until death.

, August 1, 2017

Out with the old: Hsp90 finds amino acid residue more useful than co-chaperone protein

Abbey D. Zuehlke1 and Leonard Neckers1

This article comments on work published by Zuehlke et al (Nat Commun, 2017), which demonstrates that the function of one co-chaperone in yeast is replaced by posttranslational modification (PTM) of a single amino acid within Hsp90 in higher eukaryotes.

, August 1, 2017

Having your cake and eating it – Staphylococcus aureus small colony variants can evolve faster growth rate without losing their antibiotic resistance

Gerrit Brandis1, Sha Cao1, Douglas L. Huseby1 and Diarmaid Hughes1

This article comments on work published by Cao et al. (mBio, 2027), which shows that Staphylococcus aureus can produce small colony variants (SCVs) that are challenging to detect and lead to persistent infections due to mutations affecting respiration and ATP production, with recent findings indicating various evolutionary paths for SCVs to increase growth rate while maintaining antibiotic resistance, suggesting greater adaptability and clinical challenge.

, July 14, 2017

Integrative metabolomics as emerging tool to study autophagy regulation

Sarah Stryeck1, Ruth Birner-Gruenberger2, Tobias Madl1,*

This review summarizes the advancements in metabolomics, particularly using NMR spectroscopy and mass spectrometry, and its increasing role in biological research, offering insights into autophagy regulation with a focus on key metabolites, recent studies, and future prospects in elucidating complex regulatory mechanisms of autophagy and related diseases.

, July 3, 2017

The interplay between transcription and mRNA degradation in Saccharomyces cerevisiae

Subhadeep Das1, Debasish Sarkar2 and Biswadip Das1

This review summarizes how the integration of mRNA synthesis and degradation, mediated by specialized promoters and “coordinators,” shapes the cellular transcriptome and plays a significant role in regulating gene expression profiles in various biological processes and potentially enhances evolutionary rates.

, July 3, 2017

Inhibitors of glycosomal protein import provide new leads against trypanosomiasis

Vishal C. Kalel1, Leonidas Emmanouilidis2,3, Maciej Dawidowski2,3,4, Wolfgang Schliebs1, Michael Sattler2,3, Grzegorz M. Popowicz2,3, Ralf Erdmann1

This article comments on work published by Dawidowski et al. (Science, 2017), which provides the grounds for further development of the glycosome inhibitors into clinical candidates and validates the parasite protein-protein interactions as drug targets.

Previous Next
, August 1, 2016

Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation.

Saul M. Honigberg

Diploid budding yeast (Saccharomyces cerevisiae) can adopt one of several alternative differentiation fates in response to nutrient limitation, and each of these fates provides distinct biological functions. When different strain backgrounds are taken into account, these various fates occur in response to similar environmental cues, are regulated by the same signal transduction pathways, and share many of the same master regulators. I propose that the relationships between fate choice, environmental cues and signaling pathways are not Boolean, but involve graded levels of signals, pathway activation and master-regulator activity.

, May 1, 2016

Phosphatidylthreonine: An exclusive phospholipid regulating calcium homeostasis and virulence in a parasitic protist

Ruben D. Arroyo-Olarte and Nishith Gupta

This article comments on work published by Kuchipudi et al. (Microbial Cell, 2016), which describes the role of phohsphatidylthreonine in the regulation of calcium homeostasis and virulence in the protozoan parasite Toxoplasma gondii.

, April 13, 2016

Non-genetic impact factors on chronological lifespan and stress resistance of baker’s yeast

Michael Sauer and Diethard Mattanovich

This article comments on work published by Bisschops et al. (Microbial Cell, 2015), which illustrates how important the choice of the experimental setup is and how culture conditions influcence cellular aging and survival in biotechnological processes.

, April 4, 2016

What’s old is new again: yeast mutant screens in the era of pooled segregant analysis by genome sequencing

Chris Curtin and Toni Cordente

This article comments on work published by Den Abt et al. (Microbial Cell, 2016), which identified genes involved in ethyl acetate formation in a yeast mutant screen based on a new approach combining repeated rounds of chemical mutagenesis and pooled segregant analysis by whole genome sequencing.

, March 17, 2016

The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract

Eduardo Lopez-Medina1 and Andrew Y. Koh2

This article comments on work published by Lopez-Medina et al. (PLoS Pathog, 2015) and Fan et al. (Nat Med, 2015), which utilize an “artificial” niche, the antibiotic-treated gut with concomitant pathogenic microbe expansion, to gain insight in bacterial-fungal interactions in clinically common scenarios.

, March 6, 2016

Gearing up for survival – HSP-containing granules accumulate in quiescent cells and promote survival

Ruofan Yu and Weiwei Dang

This article comments on work published by Lee et al. (Microbial Cell, 2016), which reports that distinct granules are formed in quiescent and non-quiescent cells, which determines their respective cell fates.

, March 3, 2016

Yeast screening platform identifies FDA-approved drugs that reduce Aβ oligomerization

Triana Amen1,2 and Daniel Kaganovich1

This article comments on work published by Park et al. (Microbial Cell, 2016), which discovered a number of small molecules capable of modulating Aβ aggregation in a yeast model.

November 26, 2015

Groupthink: chromosomal clustering during transcriptional memory

Kevin A. Morano

In this article, the authors comment on the study “NO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering.” by Brickner et al. (Microbial Cell, 2015), discussing the importance and molecular mechanisms of chromosomal clustering during transcriptional memory.

November 26, 2015

Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration

Amit Shrestha1, 2 and Lynn A. Megeney1, 2, 3

Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. This article discusses the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.