, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

November 18, 2024
Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Moritz Mayera, Christina Schuga, Stefan Geimer, Till Klecker and Benedikt Westermann

Budding yeast Saccharomyces cerevisiae is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM).

, October 8, 2024
A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines

A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines

Claudia Vanetti1, Irma Saulle1,2, Valentina Artusa1,2, Claudia Moscheni1, Gioia Cappelletti1, Silvia Zecchini1, Sergio Strizzi1, Micaela Garziano1,2, Claudio Fenizia1,2, Antonella Tosoni1, Martina Broggiato1, Pasquale Ogno1, Manuela Nebuloni1, Mario Clerici2,3, Daria Trabattoni1, Fiona Limanaqi1 and Mara Biasin1

Given the common tropism of SARS-CoV-2 and RSV, and the unclear consequences of their mutual influence, we developed an in vitro lung epithelial cell model to study the molecular mechanisms and cellular pathways modulated in viral co-infection.

, October 4, 2024
RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis

RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis

Ronnie L. Fulton, Bryce R. Sawyer and Diana M Downs

This study solidifies the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.

, August 26, 2024
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis

Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis

Yongqiang Yang1,a, Philipp Hartmann2,3,a and Bernd Schnabl1,4

This study aimed to investigate the significance of fecal gelatinase on clinical outcomes in patients with alcohol-associated hepatitis. In conclusion, in our cohort, fecal gelatinase does not predict mortality and does not indicate higher disease severity in patients with alcohol-associated hepatitis.

, August 5, 2024
Direct detection of stringent alarmones (pp)pGpp using malachite green

Direct detection of stringent alarmones (pp)pGpp using malachite green

Muriel Schicketanz1, Magdalena Petrová2, Dominik Rejman2, Margherita Sosio3, Stefano Donadio3 and Yong Everett Zhang1

In this study, we demonstrate the surprising discovery of a commercially available, low-cost malachite green (MG) detection kit, originally designed for orthophosphate (Pi) detection, for detecting (p)ppGpp and its analogues, especially pGpp

, July 29, 2024
Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis

Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis

Yen-Han Tseng1,2, Sheng-Wei Pan1,2,3, Jhong-Ru Huang2,4, Chang-Ching Lee1, Jung-Jyh Hung2,5, Po-Kuei Hsu2,5, Nien-Jung Chen6, Wei-Juin Su2,7, Yuh-Min Chen1,2 and Jia-Yih Feng1,2,8

The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of tuberculosis. Here we show that PD-L1 expression is increased in patients with active tuberculosis and is correlated with treatment outcomes.

, July 26, 2024
Quantification methods of Candida albicans are independent irrespective of fungal morphology

Quantification methods of Candida albicans are independent irrespective of fungal morphology

Amanda B Soares1, Maria C de Albuquerque1, Leticia M Rosa1, Marlise I Klein 2, Ana C Paravina1, Paula A Barbugli1, Livia N Dovigo3 and Ewerton G de O Mima1

Our study demonstrated that the quantification methods of C. albicans (cells/mL, CFU/mL, and vPCR) did not agree, regardless of the fungal morphology/growth, even though a significant and strong correlation is observed.

, July 22, 2024
Pathogenic Escherichia coli change the adhesion between neutrophils and endotheliocytes in the experimental bacteremia model

Pathogenic Escherichia coli change the adhesion between neutrophils and endotheliocytes in the experimental bacteremia model

Svetlana N Pleskova1,2,*, Nikolay A Bezrukov1, Sergey Z Bobyk1, Ekaterina N Gorshkova1 and Dimitri V Novikov3

In this work, we have demonstrated that in the model of experimental septicemia there is a disruption of adhesion contacts between neutrophils and endothelial cells, manifested by a decrease in adhesion force and work upon exposure to E. coli.

, July 19, 2024
Arsenite treatment induces Hsp90 aggregates distinct from conventional stress granules in fission yeast

Arsenite treatment induces Hsp90 aggregates distinct from conventional stress granules in fission yeast

Naofumi Tomimotoa, Teruaki Takasakia and Reiko Sugiura

Given the conserved role of Hsp90 as a molecular chaperone protein, our findings presented in this study may suggest a novel type of arsenite-induced biological condensates, wherein Hsp90 plays a key role in maintaining its integrity.

Previous Next
, August 1, 2016

Cryptococcus flips its lid – membrane phospholipid asymmetry modulates antifungal drug resistance and virulence

Erika Shor1, Yina Wang1, David S. Perlin1,2, and Chaoyang Xue1,2

This article comments on work published by Huang et al. (MBio, 2016), which reported that in the pathogenic fungus Cryptococcus neoformans loss of lipid flippase activity sensitized cryptococcal cells to multiple classes of antifungal drugs and abolished fungal virulence in murine models.

, July 28, 2016

A novel component of the mitochondrial genome segregation machinery in trypanosomes

Anneliese Hoffmann1,2, Martin Jakob1, and Torsten Ochsenreiter1

This article comments on work published by Trikin et al. (PLoS Pathog, 2016), which described a new component of the mitochondrial genome segregation machinery in the protozoan parasite Trypanosoma brucei.

, July 28, 2016

Bacterial genotoxin functions as immune-modulator and promotes host survival

R. Guidi1, L. Del Bell Belluz2, T. Frisan2

This article comments on work published by Del Bel Belluz et al. (PLoS Pathog, 2016), which demonstrated that the typhoid toxin of Salmonella enterica serovar Typhi esembles an immune-modulatory molecule rather than a toxic agent.

, July 27, 2016

Functions and regulation of the MRX complex at DNA double-strand breaks

Elisa Gobbini1, Corinne Cassani1, Matteo Villa1, Diego Bonetti2 and Maria Pia Longhese1

DNA double-strand breaks (DSBs) pose a serious threat to genome stability and cell survival. Cells possess mechanisms that recognize DSBs and promote their repair through either homologous recombination (HR) or non-homologous end joining (NHEJ). The present review focuses mainly on recent works in the budding yeast Saccharomyces cerevisiae to highlight structure and regulation of the evolutionary conserved Mre11-Rad50-Xrs2 (MRX) complex as well as its interplays with Tel1.

, June 27, 2016

Inhibition of Zika virus by Wolbachia in Aedes aegypti

Eric Pearce Caragata, Heverton Leandro Carneiro Dutra and Luciano Andrade Moreira

This article comments on work published by Dutra et al. (Cell Host Microbe, 2016), which investigated the potential of Wolbachia infections in Aedes aegypti to restrict infection and transmission of Zika virus.

, June 27, 2016

Syphilis: Re-emergence of an old foe

Lola V. Stamm

Syphilis is caused by infection with Treponema pallidum subsp. pallidum, a not-yet-cultivable spiral-shaped bacterium that is usually transmitted by sexual contact with an infected partner or by an infected pregnant woman to her fetus. This review provides insights into the etiology, epidemiology, clinical manifestation, diagnosis, treatment and prevention of syphilis.

, June 27, 2016

Genital Herpes: Insights into Sexually Transmitted Infectious Disease

Dinesh Jaishankar1,2,4 and Deepak Shukla1,2,3

Genital herpes is one of the most common, persistent and highly infectious sexually transmitted viral infections. This review provides an insight into the epidemiology, pathology, our current understanding of the molecular mechanisms of infection and the currently available and upcoming treatments for genital herpes.

, June 27, 2016

Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide?

Camila Braz Menezes, Amanda Piccoli Frasson, Tiana Tasca

Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in the world. This article contributes to claim the attention of public health policies to control this STD.

, June 23, 2016

House of cellulose – a new hideout for drug tolerant Mycobacterium tuberculosis

Ashwani Kumar

This article comments on work published by Trivedi et al. (Nat Commun, 2016), which shows that Mycobacterium tuberculosis cells organise themselves into biofilms in response to intracellular thiol reductive stress.

Previous Next
, August 5, 2021

The long and winding road of reverse genetics in Trypanosoma cruzi

Miguel A. Chiurillo1 and Noelia Lander1

This Editorial provides a brief historic overview that highlights the strengths and weaknesses of the molecular strategies that have been developed to genetically modify Trypanosoma cruzi, emphasizing the future directions of the field.

, April 13, 2021

Means of intracellular communication: touching, kissing, fusing

Anne Spang1

This work highlights different aspects of communication between organelles, including the importance of organellar contact sites.

, April 5, 2021

Neuropathogenesis caused by Trypanosoma brucei, still an enigma to be unveiled

Katherine Figarella1

This Editorial addresses the meningo-encephalitic stage of Trypanosoma brucei infection and the resultig neuropathogenesis as well as the impact that the application of tools developed in the last years in the field of neuroscience will have on the study of neglected tropical diseases.

, March 1, 2021

Lichens – growing greenhouses en miniature

Martin Grube1

This commentary article provides an overview on different aspects of lichen biology and the remarkable symbiotic association between fungi and algae.

, June 22, 2020

Regulation of the mitochondrial permeability transition pore and its effects on aging

Damiano Pellegrino-Coppola1

Aging is linked to mitochondrial function, with the mitochondrial permeability transition pore (mPTP) playing a key role. Yeast is a useful model for studying how mPTP affects cell survival, aging, and related diseases.

, June 1, 2020

Fungal infections in humans: the silent crisis

Katharina Kainz1, Maria A. Bauer1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

This article highlights the growing global threat of fungal infections – exacerbated by rising drug resistance and medical practices – and emphasizes the urgent need for intensified research to develop more effective antifungal strategies.

, May 4, 2020

Digesting the crisis: autophagy and coronaviruses

Didac Carmona-Gutierrez1, Maria A. Bauer1, Andreas Zimmermann1,2, Katharina Kainz1,
Sebastian J. Hofer1, Guido Kroemer3-7 and Frank Madeo1,2,8

This article reviews the multifaceted role of autophagy in antiviral defense and highlights how coronaviruses, including SARS-CoV-2, interact with this pathway, raising the possibility that targeting autophagy could offer novel therapeutic strategies against COVID-19.

, February 10, 2020

Raman-based sorting of microbial cells to link functions to their genes

Kang Soo Lee1, Michael Wagner2,3 and Roman Stocker1

In this article, the authors comment on the study “An automated Raman-based platform for the sorting of live cells by functional properties” by Lee et al. (Nat Microbiol, 2019), which presents a high-throughput optofluidic platform that integrates Raman microspectroscopy and microfluidics to accurately link microbial phenotypes to genotypes within complex communities, enabling efficient functional sorting and analysis of microbiome members.

, December 17, 2019

Viral attenuation by Endonuclease G during yeast gametogenesis: insights into ancestral roles of programmed cell death?

Jie Gao1, Sabrina Chau1 and Marc D. Meneghini1

This article relates to the study “Meiotic viral attenuation through an ancestral apoptotic pathway” by Gao et al. (Proc Natl Acad Sci, 2019), which shows that programmed cell death may have evolved as a viral defence mechanism, as demonstrated by yeast studies showing that the mitochondrial nuclease Nuc1 translocates to the cytosol during meiosis to attenuate dsRNA viruses, linking viral control to meiotic cell death processes.

Previous Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.