, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

November 26, 2021

Chromosome-condensed G1 phase yeast cells are tolerant to desiccation stress

Zhaojie Zhang1 and Gracie R. Zhang2

The budding yeast Saccharomyces cerevisiae is capable of surviving extreme water loss for a long time. However, less is known about the mechanism of its desiccation tolerance. In this study, we revealed that in an exponential culture, all desiccation tolerant yeast cells were in G1 phase and had condensed chromosomes. (…)

November 25, 2021

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its first variants in fourplex real-time quantitative reverse transcription-PCR assays

Mathieu Durand1, Philippe Thibault1, Simon Lévesque2,3, Ariane Brault4, Alex Carignan2, Louis Valiquette2, Philippe Martin2 and Simon Labbé4

The early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is required to identify and isolate contagious patients to prevent further transmission of SARS-CoV-2. In this study, we present a multitarget real-time TaqMan reverse transcription PCR (rRT-PCR) assay for the quantitative detection of SARS-CoV-2 and some of its circulating variants harboring mutations that give the virus a selective advantage. Seven different primer-probe sets that included probes containing locked nucleic acid (LNA) nucleotides were designed to amplify specific wild-type and mutant sequences in Orf1ab, Envelope (E), Spike (S), and Nucleocapsid (N) genes (…)

, October 27, 2021

Forced association of SARS-CoV-2 proteins with the yeast proteome perturb vesicle trafficking

Cinzia Klemm1,#, Henry Wood1,#, Grace Heredge Thomas1,#, Guðjón Ólafsson1,2, Mara Teixeira Torres1 and Peter H. Thorpe1

This work demonstrates that the yeast Synthetic Physical Interactions method is a rapid way to identify potential functions of ectopic viral proteins.

, July 26, 2021

Airborne bacteria in show caves from Southern Spain

Irene Dominguez-Moñino1, Valme Jurado1, Miguel Angel Rogerio-Candelera1, Bernardo Hermosin1 and Cesareo Saiz-Jimenez1

This study analyzes the factors conditioning the diversity of airborne bacteria recorded in three Andalusian show caves, subjected to different managements.

, June 18, 2021

Landscapes and bacterial signatures of mucosa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel disease

Nayaret Chamorro1,#, David A. Montero1,2,#, Pablo Gallardo3, Mauricio Farfán3, Mauricio Contreras4, Marjorie De la Fuente2, Karen Dubois2, Marcela A. Hermoso2, Rodrigo Quera5,6, Marjorie Pizarro-Guajardo7,8,9, Daniel Paredes-Sabja7,8,9, Daniel Ginard10, Ramon Rosselló-Móra11 and Roberto Vidal1,8,12

This study investigates the landscapes and alterations of mucosa-associated intestinal microbiota in patients with inflammatory bowel diseases, which cause chronic inflammation of the gut, including ulcerative colitis and Crohn’s disease.

, June 8, 2021

Genome, transcriptome and secretome analyses of the antagonistic, yeast-like fungus Aureobasidium pullulans to identify potential biocontrol genes

Maria Paula Rueda-Mejia1, Lukas Nägeli1, Stefanie Lutz2, Richard D. Hayes3, Adithi R. Varadarajan2, Igor V. Grigoriev3,4, Christian H. Ahrens2,5 and Florian M. Freimoser1

This study highlights the value of a sequential approach starting with genome mining and consecutive transcriptome and secretome analyses in order to identify a limited number of potential target genes for detailed, functional analyses in Aureobasidium pullulans.

, May 10, 2021

Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast

Catalina A. Romila1,#, StJohn Townsend1,2,#, Michal Malecki1,3, Stephan Kamrad1,2,4, María Rodríguez-López1, Olivia Hillson1, Cristina Cotobal1, Markus Ralser2,5 and Jürg Bähler1

This work presents two approaches to study chronological lifespan (CLS) for medium- to high-throughput applications, a method for Bar-seq to identify mutants showing altered CLS and a novel medium-throughput colony-forming units assay that can be largely automated by robotics.

, April 29, 2021

Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model

Catherine C. Neto1,2,#, Benedikt M. Mortzfeld3,#, John R. Turbitt1,2, Shakti K. Bhattarai3, Vladimir Yeliseyev4, Nicholas DiBenedetto4, Lynn Bry4 and Vanni Bucci2,3

This study investigates the effect of a water-soluble, proanthocyanidin-rich cranberry juice extract on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model.

, April 15, 2021

Dry biocleaning of artwork: an innovative methodology for Cultural Heritage recovery?

Giancarlo Ranalli1, Pilar Bosch-Roig2, Simone Crudele1, Laura Rampazzi3,4, Cristina Corti3 and Elisabetta Zanardini5

This work proposes an innovative methodology based on applied biotechnology for the recovery of altered stonework: the “dry biocleaning”, which envisages the use of dehydrated microbial cells without the use of free water or gel-based matrices.

Previous Next
, March 2, 2017

New insights into the function of a versatile class of membrane molecular motors from studies of Myxococcus xanthus surface (gliding) motility

Tâm Mignot1 and Marcelo Nöllmann2

This article comments on work published by Faure et al. (Nature, 2016), which deciphers force transmission at focal adhesion complexes that are involved in gliding motility in bacteria.

, March 2, 2017

Advancing host-directed therapy for tuberculosis: new therapeutic insights from the Toxoplasma gondii

Chul-Su Yang

This article comments on work published by Koh et al. (PLoS Pathog, 2017), which uncovered that infection-induced signaling pathways suggest possibilities for the development of novel therapeutic modalities for TB that target the intracellular signaling pathways permitting the replication of Mycobacterium tuberculosis (MTB).

, February 3, 2017

Breaking the bilayer: OMV formation during environmental transitions

Katherine E. Bonnington, Meta J. Kuehn

This article comments on work published by Bonnington & Kuehn (MBio, 2016), which shows how gram-negative bacteria maintain the barrier properties of the outer membrane (OM) in a wide array of physiological conditions despite their inability to degrade lipopolysaccharide (LPS) and protein material present in the outer leaflet of the OM.

, January 30, 2017

The tug-of-war over MTOR in Legionella infections

Stanimir S. Ivanov

This article comments on work published by Abshire et al (PLoS Pathog, 2016), which uncovered that the host metabolic checkpoint kinase Mechanistic target of rapamycin (MTOR) is a central regulator of the pathogen niche expansion program.

, January 2, 2017

A new role for Holliday junction resolvase Yen1 in processing DNA replication intermediates exposes Dna2 as an accessory replicative helicase

Benoît Falquet1,2 and Ulrich Rass

This article comments on work published by Ölmezer et al. (Nat Commun, 2016), which revealed a new function of Yen1, distinct from its previously known role as a Holliday junction resolvase, mediating the removal of branched HR intermediates.

, December 29, 2016

Toxin-mediated gene regulatory mechanism in Staphylococcus aureus

Hwang-Soo Joo and Michael Otto

This article comments on work published by Joo et al. (MBio, 2016), which describes the first molecular regulatory mechanism exerted by an S. aureus toxin, setting a paradigmatic example of how S. aureus toxins may influence cell functions to adjust them to times of toxin production.

, December 1, 2016

Autophagy: machinery and regulation

Zhangyuan Yin, Clarence Pascual and Daniel J. Klionsky

Macroautophagy/autophagy is an evolutionarily conserved cellular degradation process that targets cytoplasmic materials including cytosol, macromolecules and unwanted organelles. The discovery and analysis of autophagy-related (Atg) proteins have unveiled much of the machinery of autophagosome formation. In this review, we briefly summarize the physiological roles, molecular mechanism, regulatory network, and pathophysiological roles of autophagy.

, November 5, 2016

NprR, a moonlighting quorum sensor shifting from a phosphatase activity to a transcriptional activator

Stéphane Perchat1, Antoine Talagas2, Samira Zouhir2, Sandrine Poncet1, Laurent Bouillaut1,¶, Sylvie Nessler2 and Didier Lereclus1

This article comments on work published by Perchat et al. (PLoS Pathog, 2016), which demonstrates that, in the absence of the signaling peptide NprX, the sensor NprR is a dimer, which negatively controls sporulation in Bacillus thuringiensis, independently of its transcription factor activity.

, November 4, 2016

Threading Granules in Freiburg: 2nd International Symposium on “One Mitochondrion, Many Diseases – Biological and Molecular Perspectives”, a FRIAS Junior Researcher Conference, Freiburg im Breisgau, Germany, March 9th/10th, 2016

Ralf J. Braun1, Ralf M. Zerbes2, Florian Steinberg3, Denis Gris4, and Verónica I. Dumit5

INTRODUCTION Mitochondria (greek: μίτος & χονδρίον, mitos & chondrion, i.e., thread & granule) are the power houses of eukaryotic cells, and are pivotally involved in essential metabolic processes, including iron/sulfur cluster and heme biosynthesis. Mitochondria

Previous Next
January 4, 2015

The emerging role of complex modifications of tRNALysUUU in signaling pathways

Patrick C. Thiaville1,2,3,4 and Valérie de Crécy-Lagard2,4

This comment discusses the article “Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling” by Scheidt et al (Microbial Cell, 2014).

, August 22, 2014

Metabolic pathways further increase the complexity of cell size control in budding yeast

Jorrit M. Enserink

This article comments on work published by Soma et al. (Microbial Cell, 2014), which teased apart the effect of metabolism and growth rate on setting of critical cell size in Saccharomyces cerevisiae.

, April 7, 2014

Only functional localization is faithful localization

Roland Lill1,2,3

This article comments on work published by Peleh et al. (Microbial Cell 2014), which analyzes the localization of Dre2 in Saccharomyces cerevisiae.

, April 7, 2014

Metabolites in aging and autophagy

Sabrina Schroeder1,#, Andreas Zimmermann1,#, Didac Carmona-Gutierrez1, Tobias Eisenberg1, Christoph Ruckenstuhl1, Aleksandra Andryushkova1, Tobias Pendl1, Alexandra Harger1,2 and Frank Madeo1

This article analyzes the implications of specific metabolites in aging and autophagy with special emphasis on polyamine metabolism.

, January 5, 2014

One cell, one love: a journal for microbial research

Didac Carmona-Gutierrez1, Guido Kroemer2-6 and Frank Madeo1

In this inaugural article of Microbial Cell, we highlight the importance of microbial research in general and the journal’s intention to serve as a publishing forum that supports and enfolds the scientific diversity in this area as it provides a unique, high-quality and universally accessible source of information and inspiration.

, January 4, 2014

What’s the role of autophagy in trypanosomes?

Katherine Figarella1 and Néstor L. Uzcátegui1,2

This article comments on Proto et al. (Microbial Cell, 2014), who report first insights into the molecular mechanism of autophagy in African trypanosomes by generating reporter bloodstream form cell lines.

Previous

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.