, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

November 26, 2021

Chromosome-condensed G1 phase yeast cells are tolerant to desiccation stress

Zhaojie Zhang1 and Gracie R. Zhang2

The budding yeast Saccharomyces cerevisiae is capable of surviving extreme water loss for a long time. However, less is known about the mechanism of its desiccation tolerance. In this study, we revealed that in an exponential culture, all desiccation tolerant yeast cells were in G1 phase and had condensed chromosomes. (…)

November 25, 2021

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its first variants in fourplex real-time quantitative reverse transcription-PCR assays

Mathieu Durand1, Philippe Thibault1, Simon Lévesque2,3, Ariane Brault4, Alex Carignan2, Louis Valiquette2, Philippe Martin2 and Simon Labbé4

The early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is required to identify and isolate contagious patients to prevent further transmission of SARS-CoV-2. In this study, we present a multitarget real-time TaqMan reverse transcription PCR (rRT-PCR) assay for the quantitative detection of SARS-CoV-2 and some of its circulating variants harboring mutations that give the virus a selective advantage. Seven different primer-probe sets that included probes containing locked nucleic acid (LNA) nucleotides were designed to amplify specific wild-type and mutant sequences in Orf1ab, Envelope (E), Spike (S), and Nucleocapsid (N) genes (…)

, October 27, 2021

Forced association of SARS-CoV-2 proteins with the yeast proteome perturb vesicle trafficking

Cinzia Klemm1,#, Henry Wood1,#, Grace Heredge Thomas1,#, Guðjón Ólafsson1,2, Mara Teixeira Torres1 and Peter H. Thorpe1

This work demonstrates that the yeast Synthetic Physical Interactions method is a rapid way to identify potential functions of ectopic viral proteins.

, July 26, 2021

Airborne bacteria in show caves from Southern Spain

Irene Dominguez-Moñino1, Valme Jurado1, Miguel Angel Rogerio-Candelera1, Bernardo Hermosin1 and Cesareo Saiz-Jimenez1

This study analyzes the factors conditioning the diversity of airborne bacteria recorded in three Andalusian show caves, subjected to different managements.

, June 18, 2021

Landscapes and bacterial signatures of mucosa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel disease

Nayaret Chamorro1,#, David A. Montero1,2,#, Pablo Gallardo3, Mauricio Farfán3, Mauricio Contreras4, Marjorie De la Fuente2, Karen Dubois2, Marcela A. Hermoso2, Rodrigo Quera5,6, Marjorie Pizarro-Guajardo7,8,9, Daniel Paredes-Sabja7,8,9, Daniel Ginard10, Ramon Rosselló-Móra11 and Roberto Vidal1,8,12

This study investigates the landscapes and alterations of mucosa-associated intestinal microbiota in patients with inflammatory bowel diseases, which cause chronic inflammation of the gut, including ulcerative colitis and Crohn’s disease.

, June 8, 2021

Genome, transcriptome and secretome analyses of the antagonistic, yeast-like fungus Aureobasidium pullulans to identify potential biocontrol genes

Maria Paula Rueda-Mejia1, Lukas Nägeli1, Stefanie Lutz2, Richard D. Hayes3, Adithi R. Varadarajan2, Igor V. Grigoriev3,4, Christian H. Ahrens2,5 and Florian M. Freimoser1

This study highlights the value of a sequential approach starting with genome mining and consecutive transcriptome and secretome analyses in order to identify a limited number of potential target genes for detailed, functional analyses in Aureobasidium pullulans.

, May 10, 2021

Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast

Catalina A. Romila1,#, StJohn Townsend1,2,#, Michal Malecki1,3, Stephan Kamrad1,2,4, María Rodríguez-López1, Olivia Hillson1, Cristina Cotobal1, Markus Ralser2,5 and Jürg Bähler1

This work presents two approaches to study chronological lifespan (CLS) for medium- to high-throughput applications, a method for Bar-seq to identify mutants showing altered CLS and a novel medium-throughput colony-forming units assay that can be largely automated by robotics.

, April 29, 2021

Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model

Catherine C. Neto1,2,#, Benedikt M. Mortzfeld3,#, John R. Turbitt1,2, Shakti K. Bhattarai3, Vladimir Yeliseyev4, Nicholas DiBenedetto4, Lynn Bry4 and Vanni Bucci2,3

This study investigates the effect of a water-soluble, proanthocyanidin-rich cranberry juice extract on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model.

, April 15, 2021

Dry biocleaning of artwork: an innovative methodology for Cultural Heritage recovery?

Giancarlo Ranalli1, Pilar Bosch-Roig2, Simone Crudele1, Laura Rampazzi3,4, Cristina Corti3 and Elisabetta Zanardini5

This work proposes an innovative methodology based on applied biotechnology for the recovery of altered stonework: the “dry biocleaning”, which envisages the use of dehydrated microbial cells without the use of free water or gel-based matrices.

Previous Next
December 30, 2014

A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

W. Seth Childers and Lucy Shapiro

In this article, the authors comment on the study “Cell fate regulation governed by a repurposed bacterial histidine kinase” by Childers et al., PLoS Biol. 2014 Oct 28;12(10):e1001979.

December 28, 2014

Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription

Habiba Harouz, Christophe Rachez, Benoit Meijer, Christian Muchardt, Laurence Arbibe.

In this microreview, the authors discuss the article “Shigella flexneri targets the HP1γ subcode through the phosphothreoninelyase OspF” by Harouz et al. (2014), EMBO J, 22 : 2606-2622.

, October 23, 2014

Plasmodium spp. membrane glutathione S-transferases: detoxification units and drug targets

Andreas Martin Lisewski

This article comments on work published by Lisewski et al. (Cell, 2014), which reported the first examples of membrane-associated proteins in eicosanoid and glutathione metabolism members among Plasmodium spp.

, October 23, 2014

Proline cis-trans isomerization is influenced by local lysine acetylation-deacetylation

Françoise S. Howe and Jane Mellor

This article comments on work published by Howe et al. (Mol Cell, 2014), which shows that local lysine acetylation and deacetylation modulate proline cis-trans isomerization in Saccharomyces cerevisiae.

, September 29, 2014

On the link between cell cycle and infection of the Alphaproteobacterium Brucella abortus

Michaël Deghelt, Jean-Jacques Letesson, Xavier De Bolle

This article comments on work published by Deghelt et al. (Nat Comm, 2014), which describe a cell cycle arrest and resume during the Brucella abortus trafficking in host cell, suggesting that like the model Alphaproteobacterium Caulobacter crescentus, these bacteria are able to block their cell cycle at the G1 phase when starvation is sensed.

, September 23, 2014

Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

Nir Fluman and Eitan Bibi

This article comments on work published by Fluman et al. (Nat Comm, 2014), which describes the ability of bacterial multidrug transporters to move long molecules through the membrane in a processive manner.

, September 14, 2014

The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

Randy Strich and Katrina F. Cooper

This work summarizes the role cyclin C plays in regulating stress-responsive transcription in the budding yeast Saccharomyces cerevisiae, including mitochondrial fission and regulated cell death.

, September 1, 2014

Combinatorial stress responses: direct coupling of two major stress responses in Escherichia coli

Daniel R. Brown, Geraint Barton, Zhensheng Pan, Martin Buck and Sivaramesh Wigneshweraraj

This article comments on work published by Brown et al. (Nat Comm, 2014), which showed that the transcription of relA is activated by NtrC during nitrogen starvation, revealing that in E. coli and related bacteria, NtrC functions in combinatorial stress and serves to couple two major stress responses, the Ntr response and stringent response.

, July 25, 2014

The replication timing program in the hands of two HDACs

Kazumasa Yoshida1,2, Armelle Lengronne1 and Philippe Pasero1

This article comments on work published by Yoshida et al. (Mol Cell, 2014), which performed a systematic analysis of the role of histone deacetylases (HDACs) in the regulation of origin activity in budding yeast, finding that the epigenetic regulation of repetitive sequences is a key determinant of the DNA replication program.

Previous Next
January 4, 2015

The emerging role of complex modifications of tRNALysUUU in signaling pathways

Patrick C. Thiaville1,2,3,4 and Valérie de Crécy-Lagard2,4

This comment discusses the article “Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling” by Scheidt et al (Microbial Cell, 2014).

, August 22, 2014

Metabolic pathways further increase the complexity of cell size control in budding yeast

Jorrit M. Enserink

This article comments on work published by Soma et al. (Microbial Cell, 2014), which teased apart the effect of metabolism and growth rate on setting of critical cell size in Saccharomyces cerevisiae.

, April 7, 2014

Only functional localization is faithful localization

Roland Lill1,2,3

This article comments on work published by Peleh et al. (Microbial Cell 2014), which analyzes the localization of Dre2 in Saccharomyces cerevisiae.

, April 7, 2014

Metabolites in aging and autophagy

Sabrina Schroeder1,#, Andreas Zimmermann1,#, Didac Carmona-Gutierrez1, Tobias Eisenberg1, Christoph Ruckenstuhl1, Aleksandra Andryushkova1, Tobias Pendl1, Alexandra Harger1,2 and Frank Madeo1

This article analyzes the implications of specific metabolites in aging and autophagy with special emphasis on polyamine metabolism.

, January 5, 2014

One cell, one love: a journal for microbial research

Didac Carmona-Gutierrez1, Guido Kroemer2-6 and Frank Madeo1

In this inaugural article of Microbial Cell, we highlight the importance of microbial research in general and the journal’s intention to serve as a publishing forum that supports and enfolds the scientific diversity in this area as it provides a unique, high-quality and universally accessible source of information and inspiration.

, January 4, 2014

What’s the role of autophagy in trypanosomes?

Katherine Figarella1 and Néstor L. Uzcátegui1,2

This article comments on Proto et al. (Microbial Cell, 2014), who report first insights into the molecular mechanism of autophagy in African trypanosomes by generating reporter bloodstream form cell lines.

Previous

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.