, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, October 1, 2018

Trehalose-6-phosphate promotes fermentation and glucose repression in Saccharomyces cerevisiae

Rebeca L. Vicente1,2, Lucie Spina1, Jose P.L. Gómez1, Sebastien Dejean3, Jean-Luc Parrou1 and Jean Marie François1,4

This study examined the capability of trehalose-6-phosphate synthase (TPS1) homologues from various species to complement the phenotypic defects of a Saccharomyces cerevisiae tps1 mutant, resulting in the classification of complementation into different groups based on metabolic patterns and fermentation capacity, shedding light on the role of TPS1 and trehalose-6-phosphate (T6P) as critical factors in sugar fermentation and glucose repression.

, August 24, 2018

The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei

Borka Jojic1, Simona Amodeo1,2 and Torsten Ochsenreiter1

This study reveals the involvement of the translationally controlled tumor protein TCTP in cell cycle regulation and heat stress response in the bloodstream form of Trypanosoma brucei, shedding light on its role in these cellular processes.

, August 7, 2018

Single telomere length analysis in Ustilago maydis, a high-resolution tool for examining fungal telomere length distribution and C-strand 5’-end processing

Ganduri Swapna1, Eun Young Yu1 and Neal F. Lue1, 2

This article introduces the development of single telomere length analysis (STELA) for Ustilago maydis, a basidiomycete fungus, enabling the precise measurement of telomere lengths and distributions. The study demonstrates STELA’s utility in revealing the existence of relatively short telomeres in wild-type cells, preferential loss of long telomeres in a mutant defective in telomere replication, and the characterization of telomere C-strand 5’ ends, highlighting U. maydis as a strong model for telomere research.

, August 1, 2018

Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites

Louise Basmaciyan1, Laurence Berry2, Julie Gros3, Nadine Azas3 and Magali Casanova3

This article details a comprehensive analysis of miltefosine-induced cell death and autophagy in Leishmania major, providing criteria for clear identification of apoptotic and autophagic cells, demonstrating the sequential nature of autophagy followed by apoptosis in nutrient-deprived conditions, and cautioning against using the generic kinase inhibitor staurosporine as a Leishmania apoptosis inducer, with the aim of improving the understanding of these processes and their targeting for new anti-leishmanial drugs.

, June 25, 2018

Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress

Stephen D. Willis1, David C. Stieg1, Kai Li Ong2, Ravina Shah1,3, Alexandra K. Strich1,4, Julianne H. Grose2 and Katrina F. Cooper1

This article explores the response of eukaryotic cells to environmental stress, highlighting the role of the conserved cyclin C-Cdk8 kinase in determining pro-survival or pro-death programs. Specifically, it discusses how oxidative stress triggers the destruction of Med13 by the SCFGrr1 ubiquitin ligase, releasing cyclin C to promote mitochondrial fission and cell death in Saccharomyces cerevisiae. Additionally, it reveals that the AMP kinase Snf1 activates a separate degron in Med13, contributing to the complex regulation of Med13 degradation following H2O2 stress through the coordination of the cell wall integrity and MAPK pathways.

, June 22, 2018

Importance of polyphosphate in the Leishmania life cycle

Kid Kohl1, Haroun Zangger1, Matteo Rossi1, Nathalie Isorce1, Lon-Fye Lye2, Katherine L. Owens2, Stephen M. Beverley2, Andreas Mayer1 and Nicolas Fasel1

This article explores the importance of polyphosphate (polyP) in Leishmania parasites, emphasizing the role of the polyP polymerase VTC4 and its impact on parasite survival at higher temperatures. Additionally, it discusses the effects of VTC4 knockout in mouse infections, noting a delay in lesion formation and strong pathology in L. major VTC4 knockout, without confirmation through complementation and no alteration in L. guyanensis infections in mice with VTC4 knockdown.

, March 26, 2018

Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence

Maurizio D. Baroni1, Sonia Colombo2 and Enzo Martegani2

This article describes the effects of salicylate, the main metabolite of aspirin, on S. cerevisiae cells. It outlines how salicylate influences glucose transport, sugar phosphate biosynthesis, and apoptosis, particularly in MnSOD-deficient cells. Furthermore, it emphasizes the significant impact of salicylate on the exit from a quiescent state, inhibiting growth recovery and viability in long-term stationary phase cells. The passage also discusses the potential therapeutic implications of understanding the antagonistic relationship between cAMP and salicylate in targeting quiescent cancer cells with stem-like properties.

, March 22, 2018

Evolution of substrate specificity in the Nucleobase-Ascorbate Transporter (NAT) protein family

Anezia Kourkoulou1,#, Alexandros A. Pittis2,# and George Diallinas1

L-ascorbic acid (vitamin C) is an essential metabolite in animals and plants due to its role as an enzyme co-factor and antioxidant activity. Here, Kourkoulou et al. show further evidence that ascorbate-specific Nucleobase-Ascorbate Transporters (NATs) evolved by optimization of a sub-function of ancestral nucleobase transporters.

, March 21, 2018

Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1

Natthaporn Takpho1, Daisuke Watanabe1 and Hiroshi Takagi1

In Saccharomyces cerevisiae, the yeast, the Bat1 and Bat2 proteins, which are branched-chain amino acid aminotransferases, play distinct roles in valine biosynthesis and cell growth regulation, with Bat1 primarily located in the mitochondria and Bat2 in the cytosol, and the mitochondria being identified as the major site of valine biosynthesis in this yeast.

Previous Next
, June 22, 2017

Impact of the host on Toxoplasma stage differentiation

Carsten G.K. Lüder1 and Taibur Rahman1

This review summarizes how Toxoplasma gondii transitions from an acute to a chronic infection in warm-blooded animals and humans through a developmental switch influenced by host cell physiology, which determines parasite persistence mainly in neural and muscular tissues.

, June 14, 2017

Chlamydia and mitochondria – an unfragmented relationship

Suvagata Roy Chowdhury1 and Thomas Rudel1

This article comments on work published by Chowdhury et al (J Cell Biol, 2017), which demonstrated that Chlamydia infection induces and requires an upregulation of the host miRNA, miR-30c-5p (miR-30c) to ameliorate infection induced stress on the host mitochondrial architecture and hinders induction of apoptosis.

, May 29, 2017

Protein aggregation triggers a declining libido in elder yeasts that still have a lust for life

Fabrice Caudron

This article comments on work published by Schlissel et al (Science 2017), showing that aging in yeast does not lead to the expected loss of heterochromatin silencing due to Sir2 inactivity, but rather to reduced mating pheromone sensitivity caused by the aggregation of the RNA-binding protein Whi3, which can be reversed by eliminating Whi3’s polyglutamine domain.

, May 1, 2017

Post-transcriptional regulation of ribosome biogenesis in yeast

Isabelle C. Kos-Braun and Martin Koš

Microorganisms adapt to environmental changes by regulating their metabolism, and one key survival strategy is to decrease energy use during adverse conditions by halting ribosome production, with recent findings showing yeast can switch between pre-rRNA processing pathways in response to environmental shifts, adding complexity to ribosome biogenesis regulation.

, April 27, 2017

Placeholder factors in ribosome biogenesis: please, pave my way

Francisco J. Espinar-Marchena, Reyes Babiano1 and Jesús de la Cruz

In ribosome synthesis, “placeholder” factors are crucial trans-acting elements that regulate the timing and assembly of ribosomal proteins, ensuring speed and accuracy in this intricate process by preventing premature interactions and guiding the proper formation of functional ribosomal subunits.

, April 25, 2017

Insights from the redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains

Hong Li1,2, Tiandi Yang3, Tingting Liao2, Aleksandra W. Debowski2,4, Hans-Olof Nilsson2, Stuart M. Haslam3, Anne Dell3, Keith A. Stubbs4, Barry J. Marshall2 and Mohammed Benghezal2,5

This article comments on work published by Li et al. (PloS Pathog, 2017), focusing on Helicobacter pylori infections. They are mostly asymptomatic but can lead to serious conditions, and H. pylori lipopolysaccharide (LPS) is crucial for colonization and persistence, making the study of its structure and biosynthesis pathway vital for understanding pathogenesis and developing treatments.

, March 17, 2017

Evading plant immunity: feedback control of the T3SS in Pseudomonas syringae

Christopher Waite1, Jörg Schumacher1, Milija Jovanovic1, Mark Bennett1 and Martin Buck1

This article comments on work published by Waite et al. (mBio, 2017), which indicates that a negative autogenous control mechanism, where the sigma factor HrpL represses its own expression, permits the plant pathogen Pseudomonas syringae to fine-tune its type III secretion system, potentially reducing the elicitation of plant immunity and enhancing its ability to cause disease.

, March 16, 2017

Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity

Facundo Rodriguez Ayala, Carlos Bauman, Sebastián Cogliati, Cecilia Leñini, Marco Bartolini and Roberto Grau

This article comments on work published by Donato et al. (Nat Commun, 2017), which reveals that the probiotic Bacillus subtilis extends the lifespan of Caenorhabditis elegans via mechanisms including the formation of biofilms and the production of signaling molecules like NO and CSF, suggesting a potential pathway through insulin-like signaling that could impact human longevity and age-related diseases.

, March 2, 2017

Chlamydia trachomatis’ struggle to keep its host alive

Barbara S. Sixt1-4, Raphael H. Valdivia5, Guido Kroemer1-4,6-7

This article comments on work published by Sixt et al. (Cell Host Microbe, 2016), which analyzed a CpoS-deficient mutant yielding unique insights into the nature of cell-autonomous defense responses against Chlamydia.

Previous Next
, August 5, 2021

The long and winding road of reverse genetics in Trypanosoma cruzi

Miguel A. Chiurillo1 and Noelia Lander1

This Editorial provides a brief historic overview that highlights the strengths and weaknesses of the molecular strategies that have been developed to genetically modify Trypanosoma cruzi, emphasizing the future directions of the field.

, April 13, 2021

Means of intracellular communication: touching, kissing, fusing

Anne Spang1

This work highlights different aspects of communication between organelles, including the importance of organellar contact sites.

, April 5, 2021

Neuropathogenesis caused by Trypanosoma brucei, still an enigma to be unveiled

Katherine Figarella1

This Editorial addresses the meningo-encephalitic stage of Trypanosoma brucei infection and the resultig neuropathogenesis as well as the impact that the application of tools developed in the last years in the field of neuroscience will have on the study of neglected tropical diseases.

, March 1, 2021

Lichens – growing greenhouses en miniature

Martin Grube1

This commentary article provides an overview on different aspects of lichen biology and the remarkable symbiotic association between fungi and algae.

, June 22, 2020

Regulation of the mitochondrial permeability transition pore and its effects on aging

Damiano Pellegrino-Coppola1

Aging is linked to mitochondrial function, with the mitochondrial permeability transition pore (mPTP) playing a key role. Yeast is a useful model for studying how mPTP affects cell survival, aging, and related diseases.

, June 1, 2020

Fungal infections in humans: the silent crisis

Katharina Kainz1, Maria A. Bauer1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

This article highlights the growing global threat of fungal infections – exacerbated by rising drug resistance and medical practices – and emphasizes the urgent need for intensified research to develop more effective antifungal strategies.

, May 4, 2020

Digesting the crisis: autophagy and coronaviruses

Didac Carmona-Gutierrez1, Maria A. Bauer1, Andreas Zimmermann1,2, Katharina Kainz1,
Sebastian J. Hofer1, Guido Kroemer3-7 and Frank Madeo1,2,8

This article reviews the multifaceted role of autophagy in antiviral defense and highlights how coronaviruses, including SARS-CoV-2, interact with this pathway, raising the possibility that targeting autophagy could offer novel therapeutic strategies against COVID-19.

, February 10, 2020

Raman-based sorting of microbial cells to link functions to their genes

Kang Soo Lee1, Michael Wagner2,3 and Roman Stocker1

In this article, the authors comment on the study “An automated Raman-based platform for the sorting of live cells by functional properties” by Lee et al. (Nat Microbiol, 2019), which presents a high-throughput optofluidic platform that integrates Raman microspectroscopy and microfluidics to accurately link microbial phenotypes to genotypes within complex communities, enabling efficient functional sorting and analysis of microbiome members.

, December 17, 2019

Viral attenuation by Endonuclease G during yeast gametogenesis: insights into ancestral roles of programmed cell death?

Jie Gao1, Sabrina Chau1 and Marc D. Meneghini1

This article relates to the study “Meiotic viral attenuation through an ancestral apoptotic pathway” by Gao et al. (Proc Natl Acad Sci, 2019), which shows that programmed cell death may have evolved as a viral defence mechanism, as demonstrated by yeast studies showing that the mitochondrial nuclease Nuc1 translocates to the cytosol during meiosis to attenuate dsRNA viruses, linking viral control to meiotic cell death processes.

Previous Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.