, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 3, 2014

Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general

Valentina Peleh1, Jan Riemer2, Andrew Dancis3 and Johannes M. Herrmann1

In this work, the authors suggest that in Saccharomyces cerevisiae, the Mia40-dependent oxidation of proteins in the intermembrane space only takes place in specific proteins and presumably relies on the presence of Mia40-binding sites.

, January 15, 2014

Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death

Christopher Chin1,2,#, Faith Donaghey1,#, Katherine Helming1,3,#, Morgan McCarthy1,#, Stephen Rogers1, and Nicanor Austriaco1

This work suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.

, January 5, 2014

Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells

Vitor Teixeira1,2, Tânia C. Medeiros1, Rita Vilaça1,2, Pedro Moradas-Ferreira1,2, and Vítor Costa1,2

Overall, this article shows that the TORC1-Sch9p axis is deregulated in Isc1p-deficient Saccharomyces cerevisiae cells, contributing to mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature aging of isc1Δ cells.

, January 4, 2014

Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae.

Maksim I. Sorokin1,3, Dmitry A. Knorre2,3, and Fedor F. Severin2,3

The data preseted herein suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

, December 26, 2013

Tracking autophagy during proliferation and differentiation of Trypanosoma brucei

William R. Proto1, Nathaniel G. Jones1, Graham H. Coombs2, and Jeremy C. Mottram1

This article provides insights into the function of autophagy, a cellular degradation and recycling pathway, in the protozoan parasite Trypanosoma brucei.

Previous
, May 22, 2019

Septin clearance from the division site triggers cytokinesis in budding yeast

Davide Tamborrini1 and Simonetta Piatti1

This article comments on work published by Tamborrini et al (Nat Commun., 2019), which shows that septin displacement during splitting is an essential prerequisite for contractile actomyosin ring constriction during mitosis.

, May 13, 2019

The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging

Taylor N. Tibbs1,#, Lacey R. Lopez1,#, and Janelle C. Arthur1,2,3

This article shows that the microbiota is crucial for immune system development and that its relationship with the immune system during aging and the pathogenesis of age-related diseases, including cancer, needs further research to inform disease treatment and prevention.

, April 24, 2019

Ser/Thr protein phosphatases in fungi: structure, regulation and function

Joaquín Ariño1, Diego Velázquez1 and Antonio Casamayor1

In this work we present the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regulation and the roles they play in the most diverse aspects of cell biology.

, April 2, 2019

Forty-five-year evolution of probiotic therapy

Scarlett Puebla-Barragan1,2 and Gregor Reid1,2

The field of probiotics has greatly expanded over the past 45 years, driven by the need for safer alternatives to drugs, interest in natural microbial products, and clinical proof of effectiveness, with scientific formulations increasingly defining the market and promising applications for various health areas expected in the future.

, March 11, 2019

Role of pheromone recognition systems in creating new species of fission yeast

Taisuke Seike1 and Chikashi Shimoda2

This article comments on work published by Seike at al. (PloS Biol., 2019), which demonstrated an “asymmetric” pheromone recognition system in the fission yeast Schizosaccharomyces pombe.

, March 7, 2019

Adaptive bacterial response to low level chlorhexidine exposure and its implications for hand hygiene

Günter Kampf1

This article shows that bacteria can adapt to low levels of Chlorhexidine digluconate (CHG), resulting in increased tolerance and cross-resistance to other antimicrobials, suggesting caution in the widespread use of CHG to minimize avoidable selection pressure for resistance.

, February 8, 2019

Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection

Pedro Pais1,2,#, Mónica Galocha1,2,#, Romeu Viana1,2, Mafalda Cavalheiro1,2, Diana Pereira1,2, Miguel Cacho Teixeira1,2

This review explores how Candida albicans and Candida glabrata, common fungal pathogens resistant to antifungal therapy, adapt and evolve within different environments, aiming to identify stable adaptive mechanisms as potential drug targets.

, January 18, 2019

The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections?

Poushali Chakraborty1 and Ashwani Kumar1, 2

The article discusses the challenges presented by biofilms formed by non-tuberculous mycobacteria (NTM) species, which can lead to persistent infections that are difficult to treat due to phenotypic drug tolerance. The role of various cell wall components in mycobacterial biofilm formation is outlined, with a particular focus on Mycobacterium tuberculosis.

, January 7, 2019

Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways

Hannah L. Klein1, Giedrė Bačinskaja2, Jun Che3, Anais Cheblal4, Rajula Elango5, Anastasiya Epshtein1, Devon M. Fitzgerald6-9, Belén Gómez-González10, Sharik R. Khan11, Sandeep Kumar7, Bryan A. Leland12, Léa Marie13, Qian Mei14, Judith Miné-Hattab16,17, Alicja Piotrowska18, Erica J. Polleys19, Christopher D. Putnam20,21, Elina A. Radchenko19, Anissia Ait Saada22,23, Cynthia J. Sakofsky24, Eun Yong Shim3, Mathew Stracy25, Jun Xia6-9, Zhenxin Yan7, Yi Yin26, Andrés Aguilera10, Juan Lucas Argueso27, Catherine H. Freudenreich19,28, Susan M. Gasser4, Dmitry A. Gordenin24, James E. Haber29, Grzegorz Ira7, Sue Jinks-Robertson30, Megan C. King12, Richard D. Kolodner20, 31-33, Andrei Kuzminov11, Sarah AE Lambert22,23, Sang Eun Lee3, Kyle M. Miller6,15, Sergei M. Mirkin19, Thomas D. Petes26, Susan M. Rosenberg6-9,14, Rodney Rothstein34, Lorraine S. Symington13, Pawel Zawadzki18, Nayun Kim35, Michael Lisby2 and Anna Malkova5

DNA recombination, repair and mutagenesis assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

Previous Next
October 4, 2015

Starting with a degron: N-terminal formyl-methionine of nascent bacterial proteins contributes to their proteolytic control

R. Jürgen Dohmen

In this article, the author comments on the study “Formyl-methionine as a degradation signal at the N-termini of bacterial proteins.” by Piatkov et al. (Microbial Cell, 2015), discussing a novel N-terminal degradation signal (N-degron) that targets nascent proteins for degradation in Escherichia coli by a new branch of the bacterial N-end rule pathway, termed the fMet/N-end rule pathway

September 23, 2015

Elongation factor-P at the crossroads of the host-endosymbiont interface

Andrei Rajkovic1, Anne Witzky2, William Navarre3, Andrew J. Darwin4 and Michael Ibba5

Elongation factor P (EF-P) is an ancient bacterial translational factor that aids the ribosome in polymerizing oligo-prolines. EF-P structurally resembles tRNA and binds in-between the exit and peptidyl sites of the ribosome to accelerate the intrinsically slow reaction of peptidyl-prolyl bond formation. Recent studies have identified in separate organisms, two evolutionarily convergent EF-P post-translational modification systems (EPMS), split predominantly between gammaproteobacteria, and betaproteobacteria. Here, the authors highlight the recent discoveries made regarding EPMSs, with a focus on how these incomplete modification pathways shape or have been shaped by the endosymbiont-host relationship.

September 6, 2015

Feelin’ it: Differential oxidative stress sensing mediated by Cyclin C

W. Scott Moye-Rowley

Microbial cells that live exposed directly to their environmental milieu are faced with the challenge of adapting to the dynamic stress conditions that will inevitably be encountered. These stress conditions may vary over wide ranges and the most efficient responses would be tuned to produce a proportional buffering change. A mild stress would most efficiently be dealt with by a mild metabolic reprogramming that would prevent serious damage. A more severe environmental challenge would demand a more dramatic cellular compensatory response.

August 2, 2015

Subverting lysosomal function in Trypanosoma brucei

Sam Alsford

This article discusses Koh et al. (2015) “The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei (Microbial Cell 2(8): 288-298).

July 6, 2015

Entamoeba histolytica – tumor necrosis factor: a fatal attraction

Serge Ankri

This article comments on the study “In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor” by Silvestre et al. (Microbial Cell, 2015).

May 30, 2015

Toxoplasma control of host apoptosis: the art of not biting too hard the hand that feeds you

Sébastien Besteiro

Toxoplasma gondii is an obligate intracellular parasite that is able to infect a multitude of different vertebrate hosts and can survive in virtually any nucleated cell. Here, the authors discuss the article “Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly” by Graumann et al. (2015, Microbial Cell).

May 27, 2015

A safety catch for ornithine decarboxylase degradation

Christof Taxis

Feedback inhibition is a common mechanism to adjust the activity of an enzyme in accordance with the abundance of a product. This article comments on the study “Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome” by Beenukumar et al. (2015), Microbial Cell.

January 28, 2015

Fancy a gene? A surprisingly complex evolutionary history of peroxiredoxins.

Alena Zíková1,2, Miroslav Oborník1,2,3 and Julius Lukeš1,2,4

In this comment, the authors discuss the article “Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites” (Djuika et al., Microbial Cell 2015).

January 23, 2015

Quorum protection, growth and survival

Ian G . Macreadie

For the growth of a cell culture, one inoculates not with one cell but with a quorum of cells. This most often a requirement, not just a convenience, and most of us take this for granted without question. Here this observation is re-examined to understand why a quorum may be required to grow cells. The importance of quorums may be widespread in the aspects of microbiology they affect. It is very likely that quorums are connected with and have a large impact on the determination of Minimal Inhibitory Concentrations. It is also possible that low cell density may adversely affect cell survival, however, this is an area where even less is known. The need for a quorum might affect other aspects of microbial cell culture, cell isolation and cell preservation. Effects also extend to mammalian cell culture. Here I seek to review studies that have been documented and speculate on how the information might be utilized in the future.

Previous Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.