, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, July 18, 2024
Unresolved mystery of cyclic nucleotide second messengers, periplasmic acid phosphatases and bacterial natural competence

Unresolved mystery of cyclic nucleotide second messengers, periplasmic acid phosphatases and bacterial natural competence

Kristina Kronborg and Yong Everett Zhang

In this study we aimed to identify the promotors responsible for the expression of the non-specific acid phosphatase AphA during different starvation conditions, to confirm the requirement of the cAMP-dependent CRP regulon for aphA expression, and to finally identify regulators of its expression.

, June 21, 2024
Expansion of metabolically labelled endocytic organelles and cytoskeletal cell structures in Giardia lamblia using optimised U- ExM protocols

Expansion of metabolically labelled endocytic organelles and cytoskeletal cell structures in Giardia lamblia using optimised U- ExM protocols

Clirim Jetishi1,2,a, Erina A. Balmer1,2,a, Bianca M. Berger1,2,a, Carmen Faso1,3,4 and Torsten Ochsenreiter1

Understanding cellular ultrastructure is tightly bound to microscopic resolution and the ability to identify individual components at that resolution. In this study we demonstrate mostly isotropic 4.5-fold expansion of several different compartments in Giardia cells and present an optimised, shortened, and modular protocol that can be swiftly adjusted to the investigators needs.

, May 22, 2024
Polyadenylated versions of small non-coding RNAs in Saccharomyces cerevisiae are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome

Polyadenylated versions of small non-coding RNAs in Saccharomyces cerevisiae are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome

Anusha Chaudhuri1,#, Soumita Paul2,#, Mayukh Banerjea2 and Biswadip Das2

In this investigation, we unveiled a novel functional role of the major nuclear 3′→5′ exoribonuclease, Rrp6p, and its cofactor Rrp47p in the degradation of polyadenylated versions of several mature sncRNAs, including 5S, 5.8S rRNAs, all sn- and some select snoRNAs in the baker’s yeast S. cerevisiae.

, May 16, 2024
Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches

Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches

Svenja Braam1, Farida Tripodi2, Linnea Österberg1,3, Sebastian Persson1, Niek Welkenhuysen1, Paola Coccetti2 and Marija Cvijovic1

In this work we set out to explore the relationship between the subcellular localization and regulation of kinases in the context of carbon source signaling. The data presented in this paper reinforce the notion that not only the activation/inactivation of kinases but also their subcellular localization and that of their targets influence fate decisions in response to environmental changes.

, April 30, 2024
A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae

A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae

Katrin Hieronimus1,2,#, Tabea Donauer1,2,#, Jonas Klein1,#, Bastian Hinkel1,#, Julia Vanessa Spänle1,#, Anna Probst1,#, Justus Niemeyer1,#, Salina Kibrom1, Anna Maria Kiefer1, Luzia Schneider2, Britta Husemann2, Eileen Bischoff2, Sophie Möhring2, Nicolas Bayer1, Dorothée Klein1, Adrian Engels1, Benjamin Gustav Ziehmer2, Julian Stieß3, Pavlo Moroka1, Michael Schroda1, and Marcel Deponte2

Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. We established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.

, April 30, 2024
A metagenomic approach to unveil the association between fecal gut microbiota and short-chain fatty acids in diarrhea caused by diarrheagenic Escherichia coli in children

A metagenomic approach to unveil the association between fecal gut microbiota and short-chain fatty acids in diarrhea caused by diarrheagenic Escherichia coli in children

Pablo Gallardo1,2, Mariana Izquierdo2, Tomeu Viver3, Esteban Bustos-Caparros3, Dana Piras2, Roberto M. Vidal4, Hermie J.M. Harmsen1 and Mauricio J. Farfan2

Diarrheagenic Escherichia coli (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Our results increase the knowledge of the association between short chain fatty acids during diarrhea and changes in the microbiota composition associated with the presence of DEC pathogens.

, April 6, 2024
The effect of multiple sclerosis therapy on gut microbiota dysbiosis: a longitudinal prospective study

The effect of multiple sclerosis therapy on gut microbiota dysbiosis: a longitudinal prospective study

Andreea-Cristina Paraschiv1,a, Vitalie Vacaras1,2,a, Cristina Nistor1,2, Cristiana Vacaras3, Stefan Strilciuc1 and Dafin F Muresanu1,2

The gut microbiota, a complex ecosystem with various immune functions, plays a significant role in MS, and its response to different treatments is highlighted in this study. In clinical practice, maintaining a healthy microbiota is crucial for individuals with MS.

, March 14, 2024
Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study

Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study

Ivan Kushkevych1, Kristýna Martínková1, Lenka Mráková1, Francesco Giudici2, Simone Baldi2, David Novak3, Márió Gajdács4, Monika Vítězová1, Dani Dordevic5, Amedeo Amedei2 and Simon K.-M. R. Rittmann6

Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis) of ulcerative colitis UC. Our findings highlight, among other observations, significant variations in the gut microbial composition among patients with varying disease severity and activity.

, February 27, 2024
Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination

Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination

Jesús Gómez-Montalvo1, Alvaro de Obeso Fernández del Valle1, Luis Fernando De la Cruz Gutiérrez1, Jose Mario Gonzalez-Meljem1 and Christian Quintus Scheckhuber1

Saccharomyces cerevisiae has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker´s yeast.

Previous Next
March 20, 2015

Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast

Ralf J. Braun1,#, Cornelia Sommer2,3,#, Christine Leibiger1,#, Romina J.G. Gentier4,#, Verónica I. Dumit5, Katrin Paduch1, Tobias Eisenberg2, Lukas Habernig2, Gert Trausinger6, Christoph Magnes6, Thomas Pieber6,7, Frank Sinner6,7, Jörn Dengjel5, Fred W. van Leeuwen4, Guido Kroemer8-11, and Frank Madeo2,3

Impaired protein degradation and mitochondrial dysfunction are believed to contribute to neurodegenerative disorders, including Alzheimer disease (AD). This microreview comments on the article “Accumulation of Basic Amino Acids at Mitochondria Dictates the Cytotoxicity of Aberrant Ubiquitin” by Braun et al. (2015), Cell Rep.

March 20, 2015

Translate to divide: сontrol of the cell cycle by protein synthesis

Michael Polymenis1 and Rodolfo Aramayo2

Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division. Experiments with proliferating populations of microbial strains, animal or plant cell lines, have rigorous expectations. Under the same culture conditions, cells ought to have the same properties and composition in every single experiment. The basic “metrics” of proliferating cells remain constant, even after many rounds of cell division. These metrics include cellular mass and volume, and macromolecular composition. The constancy of such parameters reflects the fundamental ability of cells to coordinate their growth with their division. Balancing cell growth with cell division determines the overall rates of cell proliferation…

March 2, 2015

New roles for autophagy and spermidine in T cells

D. J. Puleston and A. K. Simon

This microreview discusses the article “Autophagy is a critical regulator of memory CD8+ T cell formation” by Puleston et al. (2014), eLife.

March 2, 2015

Characterization of the Maf family of polymorphic toxins in pathogenic Neisseria species

Anne Jamet1,2,3,4,5, Xavier Nassif2,3,4,5

In addition to harmless commensal species, Neisseria genus encompasses two pathogenic species, N. meningitidis (the meningococcus) and N. gonorrhoeae (the gonococcus), which are responsible for meningitis and genital tract infections, respectively. This microreview comments on the article “A new family of secreted toxins in pathogenic Neisseria species” by Jamet et al. (2015), PLoS Pathog.

March 2, 2015

Live fast, die soon: cell cycle progression and lifespan in yeast cells

Javier Jiménez, Samuel Bru, Mariana PC Ribeiro and Josep Clotet

Our understanding of lifespan has benefited enormously from the study of a simple model, the yeast Saccharomyces cerevisiae. Although a unicellular organism, yeasts undergo many of the processes directly related with aging that to some extent are conserved in mammalian cells. Nutrient-limiting conditions have been involved in lifespan extension, especially in the case of caloric restriction, which also has a direct impact on cell cycle progression. In fact, other environmental stresses (osmotic, oxidative) that interfere with normal cell cycle progression also influence the lifespan of cells, indicating a relationship between lifespan and cell cycle control. In the present review we compile and discuss new findings related to how cell cycle progression is regulated by other nutrients. We centred this review on the analysis of phosphate, also give some attention to nitrogen, and the impact of these nutrients on lifespan…

March 2, 2015

Yeast as a tool for studying proteins of the Bcl-2 family

Peter Polčic, Petra Jaká and Marek Mentel

This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins.

March 2, 2015

Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death

Pedro Gonçalves1,2,4, Arnaldo Videira1,2,3

During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses…

January 15, 2015

EzrA: a spectrin-like scaffold in the bacterial cell division machinery

Robert M Cleverley, Richard J Lewis

Much progress has been made in identifying the components of the divisome, the assembly of proteins that undertakes the vital process of cell division in bacteria. However, how the highly interdependent processes on either side of the membrane are coordinated during division is a major unresolved question. This comment discusses the article “Structure and function of a spectrin-like regulator of bacterial cytokinesis” by Cleverley et al. (2014), Nat Commun.

January 12, 2015

Microbial hara-kiri: Exploiting lysosomal cell death in malaria parasites

Jun-Hong Ch’ng1,2, Johan Ursing2 and Kevin Shyong-Wei Tan1

The antimalarial drug chloroquine (CQ) has been sidelined in the fight against falciparum malaria due to wide-spread CQ resistance. This comment discusses the article “Validation of a chloroquine-induced cell death mechanism for clinical use against malaria” by Ch’ng et al. (2014), Cell Death Dis.

Previous Next
, February 21, 2025

It takes four to tango: the cooperative adventure of scientific publishing

Didac Carmona-Gutierrez1,2, Katharina Kainz1 and Frank Madeo1-3

This Editorial is the 500th article published in Microbial Cell, a journey that started in 2014 and has seen the journal grow steadily and maintain itself as a respected community platform. The foundation that has allowed for and driven this development – as for any responsible journal – is composed of four essential pillars: the readers, the authors, the editors and the referees.

, August 20, 2024
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Eun-Gyu No, Heidi M Blank and Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.

, June 1, 2023

Ribose 5-phosphate: the key metabolite bridging the metabolisms of nucleotides and amino acids during stringent response in Escherichia coli?

Paulina Katarzyna Grucela1, Tobias Fuhrer2, Uwe Sauer2, Yanjie Chao3 and Yong Everett Zhang1

Here we propose the metabolite ribose 5’-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.

August 24, 2022

Flagellated bacterial porter for in situ tumor vaccine

Haiheng Xu1, Yiqiao Hu1, 2 and Jinhui Wu1, 2, 3

Cancer immunotherapy, which use the own immune system to attack tumors, are increasingly popular treatments. But, due to the tumor immunosuppressive microenvironment, the antigen presentation in the tumor is limited. Recently, a growing number of people use bacteria to stimulate the body’s immunity for tumor treatment due to bacteria themselves have a variety of elements that activate Toll-like receptors. Here, we discuss the use of motility of flagellate bacteria to transport antigens to the tumor periphery to activate peritumoral dendritic cells to enhance the effect of in situ tumor vaccines.

August 1, 2022

The rise of Candida auris: from unique traits to co-infection potential

Nadine B. Egger1,§, Katharina Kainz1,§, Adina Schulze1, Maria A. Bauer1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

Candida auris is a multidrug resistant (MDR) fungal pathogen with a crude mortality rate of 30-60%. First identified in 2009, C. auris has been rapidly rising to become a global risk in clinical settings and was declared an urgent health threat by the Centers for Disease Control and Prevention (CDC). A concerted global action is thus needed to successfully tackle the challenges created by this emerging fungal pathogen. In this brief article, we underline the importance of unique virulence traits, including its easy transformation, its persistence outside the host and its resilience against multiple cellular stresses, as well as of environmental factors that have mainly contributed to the rise of this superbug.

April 4, 2022

A hundred spotlights on microbiology: how microorganisms shape our lives

Didac Carmona-Gutierrez1, Katharina Kainz1, Andreas Zimmermann1, Sebastian J. Hofer1, Maria A. Bauer1, Christoph Ruckenstuhl1, Guido Kroemer2-4 and Frank Madeo1,5,6

Viral, bacterial, fungal and protozoal biology is of cardinal importance for the evolutionary history of life, ecology, biotechnology and infectious diseases. Various microbiological model systems have fundamentally contributed to the understanding of molecular and cellular processes, including the cell cycle, cell death, mitochondrial biogenesis, vesicular fusion and autophagy, among many others. Microbial interactions within the environment have profound effects on many fields of biology, from ecological diversity to the highly complex and multifaceted impact of the microbiome on human health. Also, biotechnological innovation and corresponding industrial operations strongly depend on microbial engineering. With this wide range of impact in mind, the peer-reviewed (…)

March 21, 2022

Yeast goes viral: probing SARS-CoV-2 biology using S. cerevisiae

Brandon Ho1, Raphael Loll-Krippleber1 and Grant W. Brown1

The budding yeast Saccharomyces cerevisiae has long been an outstanding platform for understanding the biology of eukaryotic cells. Robust genetics, cell biology, molecular biology, and biochemistry complement deep and detailed genome annotation, a multitude of genome-scale strain collections for functional genomics, and substantial gene conservation with Metazoa to comprise a powerful model for modern biological research. Recently, the yeast model has demonstrated its utility in a perhaps unexpected area, that of eukaryotic virology. Here we discuss three innovative applications of the yeast model system to reveal functions and investigate variants of proteins encoded by the SARS-CoV-2 virus.

, December 6, 2021

Murals meet microbes: at the crossroads of microbiology and cultural heritage

Maria A. Bauer1, Katharina Kainz1, Christoph Ruckenstuhl1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

This article comments on the duality of microorganisms in the conservation and restoration of cultural heritage, which encompasses the negative impact of damaging microorganisms and recent advances in using specific microorganisms and microbial-based technologies for cultural heritage preservation.

, September 21, 2021

Urm1, not quite a ubiquitin-like modifier?

Lars Kaduhr1, Cindy Brachmann1, Keerthiraju Ethiraju Ravichandran2,3, James D. West4, Sebastian Glatt2 and Raffael Schaffrath1

This article comments on work published by Brachmann et al. (Redox Biol, 2020), which studied urmylation of the yeast 2-Cys peroxiredoxin Ahp1, uncovering that promiscuous lysine target sites and specific redox requirements determine the Urm1 acceptor activity of the peroxiredoxin.

Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.