Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?
Eun-Gyu No, Heidi M Blank and Michael Polymenis
Viewpoint |
page 321-327 | 10.15698/mic2024.08.835 | Full text | PDF |
Abstract
Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.
Characterising glycosaminoglycans in human breastmilk and their potential role in infant health
Melissa Greenwood, Patricia Murciano-Martínez, Janet Berrington, Sabine L Flitsch, Sean Austin and Christopher Stewart
Reviews |
page 221-234 | 10.15698/mic2024.07.827 | Full text | PDF |
Abstract
Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk. The structural complexity of GAGs makes detection and analysis complicated therefore, research is time consuming and limited to highly specialised teams experienced in carbohydrate analysis. In breastmilk, GAGs are present in varying quantities in four forms; chondroitin sulphate, heparin/heparan sulphate, dermatan sulphate and hyaluronic acid, and are hypothesised to behave similar to other bioactive components with suspected roles in pathogen defense and proliferation of beneficial gut bacteria. Chondroitin sulphate and heparin, being the most abundant, are expected to have the most impact on infant health. Their decreasing concentration over lactation further indicates their role and potential importance during early life.
Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms
Shweta Sinha, Shifu Aggarwal and Durg Vijai Singh
Reviews |
page 368-377 | 10.15698/mic2024.11.839 | Full text | PDF |
Abstract
Staphylococcus aureus, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in S. aureus, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in S. aureus. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable S. aureus to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of S. aureus biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in S. aureus. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.
From microbes to medicine: harnessing the gut microbiota to combat prostate cancer
Anjali Yadav, Meenakshi Kaushik, Prabhakar Tiwari and Rima Dada
Reviews |
page 187-197 | 10.15698/mic2024.05.824 | Full text | PDF |
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM’s involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention
Juan C Becerra, Lauren Hitchcock, Khoa Vu and Johannes S Gach
Reviews |
page 207-220 | 10.15698/mic2024.07.826 | Full text | PDF |
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV- 1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress
Fiorella Galello, Mariana Bermúdez-Moretti, María Clara Ortolá Martínez, Silvia Rossi and Paula Portela
Reviews |
page 90-105 | 10.15698/mic2024.03.818 | Full text | PDF |
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts
Lajos Acs-Szabo, Laszlo-Attila Papp and Ida Miklos
Reviews |
page 288-311 | 10.15698/mic2024.08.833 | Full text | PDF |
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker’s yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in Anabaena sp. PCC 7120
Julia Graf, Leonard Fresenborg, Hans-Michael Seitz, Rafael Pernil and Enrico Schleiff
Research Articles |
page 41-56 | 10.15698/mic2024.02.814 | Full text | PDF |
Abstract
Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for Anabaena sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. Anabaena contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of tonB3 and btuD show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.
A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines
Claudia Vanetti, Irma Saulle, Valentina Artusa, Claudia Moscheni, Gioia Cappelletti, Silvia Zecchini, Sergio Strizzi, Micaela Garziano, Claudio Fenizia, Antonella Tosoni, Martina Broggiato, Pasquale Ogno, Manuela Nebuloni, Mario Clerici, Daria Trabattoni, Fiona Limanaqi and Mara Biasin
Research Articles |
page 353-367 | 10.15698/mic2024.10.838 | Full text | PDF |
Abstract
Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an in vitro co-infection model to assess how RSV/SARS-CoV-2 co- infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS- CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.
A metagenomic approach to unveil the association between fecal gut microbiota and short-chain fatty acids in diarrhea caused by diarrheagenic Escherichia coli in children
Pablo Gallardo, Mariana Izquierdo, Tomeu Viver, Esteban Bustos-Caparros, Dana Piras, Roberto M. Vidal, Hermie J.M. Harmsen and Mauricio J. Farfan
Research Articles |
page 116-127 | 10.15698/mic2024.04.820 | Full text | PDF |
Abstract
Diarrheagenic Escherichia coli (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Short-chain fatty acids (SCFAs) are the main metabolic product of anaerobic fermentation in the gut, but their role in DEC diarrhea has not yet been established. In this study, we determine the levels of acetate, propionate, and butyrate in stool samples from children with diarrhea caused by DEC, and we identify bacteria from the fecal gut microbiota associated with the production of SCFAs. The microbiota and SCFAs levels in stool samples obtained from 40 children with diarrhea and 43 healthy children were determined by 16S rRNA gene sequencing and HPLC, respectively. Additionally, shotgun metagenomics was used to identify metagenome-assembled genomes (MAGs) in a subgroup of samples. The results showed significantly higher levels of all SCFAs tested in diarrheal samples than in healthy controls. The abundance of Streptococcus sp., Limosilactobacillus, Blautia, Escherichia, Bacteroides, Megamonas, and Roseburia was higher in the DEC group than in the healthy individuals. Functional analysis of bacteria and their main metabolic pathways made it possible to identify species MAGs that could be responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, based on our results and published data, we suggest that SCFAs may be important in the crosstalk between the microbiota and DEC pathogens in the gut.
A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae
Katrin Hieronimus, Tabea Donauer, Jonas Klein, Bastian Hin-kel, Julia Vanessa Spänle, Anna Probst, Justus Niemeyer, Sa-lina Kibrom, Anna Maria Kiefer, Luzia Schneider, Britta Huse-mann, Eileen Bischoff, Sophie Möhring, Nicolas Bayer, Doro-thée Klein, Adrian Engels, Benjamin Gustav Ziehmer, Julian Stieß, Pavlo Moroka, Michael Schroda, and Marcel Deponte
Research Articles |
page 128-142 | 10.15698/mic2024.04.821 | Full text | PDF |
Abstract
Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.
Arsenite treatment induces Hsp90 aggregates distinct from conventional stress granules in fission yeast
Naofumi Tomimoto, Teruaki Takasaki and Reiko Sugiura
Research Articles |
page 242-253 | 10.15698/mic2024.07.829 | Full text | PDF |
Abstract
Various stress conditions, such as heat stress (HS) and oxidative stress, can cause biomolecular condensates represented by stress granules (SGs) via liquid-liquid phase separation. We have previously shown that Hsp90 forms aggregates in response to HS and that Hsp90 aggregates transiently co- localize with SGs as visualized by Pabp. Here, we showed that arsenite, one of the well-described SG-inducing stimuli, induces Hsp90 aggregates distinct from conventional SGs in fission yeast. Arsenite induced Hsp90 granules in a dose- dependent manner, and these granules were significantly diminished by the co- treatment with a ROS scavenger N-acetyl cysteine (NAC), indicating that ROS are required for the formation of Hsp90 granules upon arsenite stress. Notably, Hsp90 granules induced by arsenite do not overlap with conventional SGs as represented by eIF4G or Pabp, while HS-induced Hsp90 granules co-localize with SGs. Nrd1, an RNA-binding protein known as a HS-induced SG component, was recruited into Hsp90 aggregates but not to the conventional SGs upon arsenite stress. The non-phosphorylatable eIF2α mutants significantly delayed the Hsp90 granule formation upon arsenite treatment. Importantly, inhibition of Hsp90 by geldanamycin impaired the Hsp90 granule formation and reduced the arsenite tolerance. Collectively, arsenite stimulates two types of distinct aggregates, namely conventional SGs and a novel type of aggregates containing Hsp90 and Nrd1, wherein Hsp90 plays a role as a center for aggregation, and stress-specific compartmentalization of biomolecular condensates.
Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study
Ivan Kushkevych, Kristýna Martínková, Lenka Mráková, Francesco Giudici, Simone Baldi, David Novak, Márió Gajdács, Monika Vítězová, Dani Dordevic, Amedeo Amedei and Simon K.-M. R. Rittmann
Research Articles |
page 79-89 | 10.15698/mic2024.03.817 | Full text | PDF |
Abstract
Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition – focusing on sulfate-reducing bacteria (SRB) – in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients’ disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.
Expansion of metabolically labelled endocytic organelles and cytoskeletal cell structures in Giardia lamblia using optimised U- ExM protocols
Clirim Jetishi, Erina A. Balmer, Bianca M. Berger, Carmen Faso and Torsten Ochsenreiter
Research Articles |
page 198-206 | 10.15698/mic2024.06.825 | Full text | PDF |
Abstract
Understanding cellular ultrastructure is tightly bound to microscopic resolution and the ability to identify individual components at that resolution. Expansion microscopy has revolutionised this topic. Here we present and compare two protocols of ultrastructure expansion microscopy that allow for 4.5-fold mostly isotropic expansion and the use of antibodies, metabolic labelling, and DNA stains to demarcate individual regions such as the endoplasmic reticulum, the nuclei, the peripheral endocytic compartments as well as the ventral disc and the cytoskeleton in Giardia lamblia. We present an optimised, shortened, and modular protocol that can be swiftly adjusted to the investigators needs in this important protozoan model organism.
Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches
Svenja Braam, Farida Tripodi, Linnea Österberg, Sebastian Persson, Niek Welkenhuysen, Paola Coccetti and Marija Cvijovic
Research Articles |
page 143-154 | 10.15698/mic2024.05.822 | Full text | PDF |
Abstract
The AMPK/SNF1 pathway governs energy balance in eukaryotic cells, notably influencing glucose de-repression. In S. cerevisiae, Snf1 is phosphorylated and hence activated upon glucose depletion. This activation is required but is not sufficient for mediating glucose de-repression, indicating further glucose- dependent regulation mechanisms. Employing fluorescence recovery after photobleaching (FRAP) in conjunction with non-linear mixed effects modelling, we explore the spatial dynamics of Snf1 as well as the relationship between Snf1 phosphorylation and its target Mig1 controlled by hexose sugars. Our results suggest that inactivation of Snf1 modulates Mig1 localization and that the kinetic of Snf1 localization to the nucleus is modulated by the presence of non-fermentable carbon sources. Our data offer insight into the true complexity of regulation of this central signaling pathway in orchestrating cellular responses to fluctuating environmental cues. These insights not only expand our understanding of glucose homeostasis but also pave the way for further studies evaluating the importance of Snf1 localization in relation to its phosphorylation state and regulation of downstream targets.
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis
Yongqiang Yang, Philipp Hartmann and Bernd Schnabl
Research Articles |
page 328-338 | 10.15698/mic2024.08.836 | Full text | PDF |
Abstract
Alcohol-associated liver disease is highly prevalent worldwide, with alcohol-associated hepatitis as a severe form characterized by substantial morbidity, mortality, and economic burden. Gut bacterial dysbiosis has been linked to progression of alcohol-associated hepatitis. Fecal cytolysin secreted by the pathobiont Enterococcus faecalis (E. faecalis) is associated with increased mortality in patients with alcohol-associated hepatitis. Although gelatinase is considered a virulence factor in E. faecalis, its prevalence and impact on alcohol- associated hepatitis patient outcomes remains unclear. In this study, 20 out of 65 (30.8%) patients with alcohol-associated hepatitis tested positive for gelatinase in their stool. There were no significant differences in 30-day and 90-day mortality between gelatinase-positive and gelatinase-negative patients (p=0.97 and p=0.48, respectively). Fecal gelatinase had a low discriminative ability for 30-day mortality (area under the curve [AUC] 0.50 vs fibrosis-4 Index (FIB-4) 0.75) and 90-day mortality compared with other established liver disease markers (AUC 0.57 vs FIB- 4 0.79 or ‘age, serum bilirubin, INR, and serum creatinine’ (ABIC) score 0.78). Furthermore, fecal gelatinase was not an important feature for 30-day or 90-day mortality per random forest analysis. Finally, gelatinase-positive patients with alcohol-associated hepatitis did not exhibit more severe liver disease compared with gelatinase-negative patients. In conclusion, fecal gelatinase does not predict mortality or disease severity in patients with alcohol-associated hepatitis from our cohort.
Pathogenic Escherichia coli change the adhesion between neutrophils and endotheliocytes in the experimental bacteremia model
Svetlana N Pleskova, Nikolay A Bezrukov, Sergey Z Bobyk, Ekaterina N Gorshkova and Dimitri V Novikov
Research Articles |
page 254-264 | 10.15698/mic2024.07.830 | Full text | PDF |
Abstract
Septicemia caused by gram-negative bacteria is characterized by high death rate due to the endotoxin release. Since the septicemia depends not only on biochemical aspects of interactions in the system bloodstream, the study of mechanical interactions is also important. Using a model of experimental septicemia caused by E. coli, a hyperproduction of integrins CD11a and CD11b by neutrophils was shown, but this did not lead to the establishment of strong adhesion contacts between endothelial cells and neutrophils. On the contrary, adhesion force and work, as assessed by FS spectroscopy, were statistically significantly reduced in the presence of bacteria. It has also been shown that exposure to the pathogenic strain E. coli 321 increases the stiffness of the membrane-cytoskeleton complex of endothelial cells and bacteria significantly change their morphology on long-term observation. At the same time, we observed the death of neutrophils by apoptosis. Thus, it was shown that besides lipopolysaccharide release there are other pathogenic factors of E. coli: decrease in the interaction between neutrophil and endothelial cell caused by an increase of the endothelial cell rigidity and apoptotic death of neutrophils probably as a result of adhesins and exotoxin effects. Obtained results should be taken in mind during the therapy of septicemia.
Polyadenylated versions of small non-coding RNAs in Saccharomyces cerevisiae are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome
Anusha Chaudhuri, Soumita Paul, Mayukh Banerjea and Biswadip Das
Research Articles |
page 155-186 | 10.15698/mic2024.05.823 | Full text | PDF |
Abstract
In Saccharomyces cerevisiae, polyadenylated forms of mature (and not precursor) small non-coding RNAs (sncRNAs) those fail to undergo proper 3¢-end maturation are subject to an active degradation by Rrp6p and Rrp47p, which does not require the involvement of core exosome and TRAMP components. In agreement with this finding, Rrp6p/Rrp47p is demonstrated to exist as an exosome-independent complex, which preferentially associates with mature polyadenylated forms of these sncRNAs. Consistent with this observation, a C-terminally truncated version of Rrp6p (Rrp6p-ΔC2) lacking physical association with the core nuclear exosome supports their decay just like its full-length version. Polyadenylation is catalyzed by both the canonical and non-canonical poly(A) polymerases, Pap1p and Trf4p. Analysis of the polyadenylation profiles in WT and rrp6-Δ strains revealed that the majority of the polyadenylation sites correspond to either one to three nucleotides upstream or downstream of their mature ends and their poly(A) tails ranges from 10-15 adenylate residues. Most interestingly, the accumulated polyadenylated snRNAs are functional in the rrp6-Δ strain and are assembled into spliceosomes. Thus, Rrp6p-Rrp47p defines a core nuclear exosome-independent novel RNA turnover system in baker’s yeast targeting imperfectly processed polyadenylated sncRNAs that accumulate in the absence of Rrp6p.
Predictable regulation of survival by intratumoral microbe-immune crosstalk in patients with lung adenocarcinoma
Shuo Shi, Yuwen Chu, Haiyan Liu, Lan Yu, Dejun Sun, Jialiang Yang, Geng Tian, Lei Ji, Cong Zhang and Xinxin Lu
Research Articles |
page 29-40 | 10.15698/mic2024.02.813 | Full text | PDF |
Abstract
Intratumoral microbiota can regulate the tumor immune microenvironment (TIME) and mediate tumor prognosis by promoting inflammatory response or inhibiting anti-tumor effects. Recent studies have elucidated the potential role of local tumor microbiota in the development and progression of lung adenocarcinoma (LUAD). However, whether intratumoral microbes are involved in the TIME that mediates the prognosis of LUAD remains unknown. Here, we obtained the matched tumor microbiome and host transcriptome and survival data of 478 patients with LUAD in The Cancer Genome Atlas (TCGA). Machine learning models based on immune cell marker genes can predict 1- to 5-year survival with relative accuracy. Patients were stratified into high- and low-survival-risk groups based on immune cell marker genes, with significant differences in intratumoral microbial communities. Specifically, patients in the high-risk group had significantly higher alpha diversity (p < 0.05) and were characterized by an enrichment of lung cancer-related genera such as Streptococcus. However, network analysis highlighted a more active pattern of dominant bacteria and immune cell crosstalk in TIME in the low-risk group compared to the high-risk group. Our study demonstrated that intratumoral microbiota-immune crosstalk was strongly associated with prognosis in LUAD patients, which would provide new targets for the development of precise therapeutic strategies.
Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis
Yen-Han Tseng, Sheng-Wei Pan, Jhong-Ru Huang, Chang-Ching Lee, Jung-Jyh Hung, Po-Kuei Hsu, Nien-Jung Chen, Wei-Juin Su, Yuh-Min Chen and Jia-Yih Feng
Research Articles |
page 277-287 | 10.15698/mic2024.07.832 | Full text | PDF |
Abstract
The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of Mycobacterium tuberculosis (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of PD-L1, DNMT3b, TET1, TET2, and lower expression of DNMT1, compared to that in the non-TB subjects. The expression of PD-L1 and TET-1 was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and TET-1 knockdown in human macrophages increased and decreased PD-L1 expression, respectively. Overall, PD-L1 expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating PD-L1 expression in human macrophages.
Quantification methods of Candida albicans are independent irrespective of fungal morphology
Amanda B Soares, Maria C de Albuquerque, Leticia M Rosa, Marlise I Klein , Ana C Paravina, Paula A Barbugli, Livia N Dovigo and Ewerton G de O Mima
Research Articles |
page 265-277 | 10.15698/mic2024.07.831 | Full text | PDF |
Abstract
The ability of Candida albicans to switch its morphology from yeast to filaments, known as polymorphism, may bias the methods used in microbial quantification. Here, we compared the quantification methods [cell/mL, colony forming units (CFU)/mL, and the number of nuclei estimated by viability polymerase chain reaction (vPCR)] of three strains of C. albicans (one reference strain and two clinical isolates) grown as yeast, filaments, and biofilms. Metabolic activity (XTT assay) was also used for biofilms. Comparisons between the methods were evaluated by agreement analyses [Intraclass and Concordance Correlation Coefficients (ICC and CCC, respectively) and Bland-Altman Plot] and Pearson Correlation (α = 0.05). Principal Component Analysis (PCA) was employed to visualize the similarities and differences between the methods. Results demonstrated a lack of agreement between all methods irrespective of fungal morphology/growth, even when a strong correlation was observed. Bland- Altman plot also demonstrated proportional bias between all methods for all morphologies/growth, except between CFU/mL X vPCR for yeasts and biofilms. For all morphologies, the correlation between the methods were strong, but without linear relationship between them, except for yeast where vPCR showed weak correlation with cells/mL and CFU/mL. XTT moderately correlated with CFU/mL and vPCR and weakly correlated with cells/mL. For all morphologies/growth, PCA showed that CFU/mL was similar to cells/mL and vPCR was distinct from them, but for biofilms vPCR became more similar to CFU/mL and cells/mL while XTT was the most distinct method. As conclusions, our investigation demonstrated that CFU/mL underestimated cells/mL, while vPCR overestimated both cells/mL and CFU/mL, and that the methods had poor agreement and lack of linear relationship, irrespective of C. albicans morphology/growth.
Quantifying yeast lipidomics by high-performance thin-layer chromatography (HPTLC) and comparison to mass spectrometry-based shotgun lipidomics
Thorsten Meyer, Oskar Knittelfelder, Martin Smolnig and Patrick Rockenfeller
Research Articles |
page 57-68 | 10.15698/mic2024.02.815 | Full text | PDF |
Abstract
Lipidomic analysis in diverse biological settings has become a frequent tool to increase our understanding of the processes of life. Cellular lipids play important roles not only as being the main components of cellular membranes, but also in the regulation of cell homeostasis as lipid signaling molecules. Yeast has been harnessed for biomedical research based on its good conservation of genetics and fundamental cell organisation principles and molecular pathways. Further application in so-called humanised yeast models have been developed which take advantage of yeast as providing the basics of a living cell with full control over heterologous expression. Here we present evidence that high-performance thin-layer chromatography (HPTLC) represents an effective alternative to replace cost intensive mass spectrometry-based lipidomic analyses. We provide statistical comparison of identical samples by both methods, which support the use of HPTLC for quantitative analysis of the main yeast lipid classes.
Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination
Jesús Gómez-Montalvo, Alvaro de Obeso Fernández del Valle, Luis Fernando De la Cruz Gutiérrez, Jose Mario Gonzalez-Meljem and Christian Quintus Scheckhuber
Research Articles |
page 69-78 | 10.15698/mic2024.02.816 | Full text | PDF |
Abstract
Saccharomyces cerevisiae (baker´s yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker´s yeast.
RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis
Ronnie L. Fulton, Bryce R. Sawyer and Diana M Downs
Research Articles |
page 339-352 | 10.15698/mic2024.10.837 | Full text | PDF |
Abstract
Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. In vitro RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine – 2-aminoacrylate (2AA) and 2- aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of E. coli or S. enterica without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5’-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in S. enterica and E. coli. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.
The effect of multiple sclerosis therapy on gut microbiota dysbiosis: a longitudinal prospective study
Andreea-Cristina Paraschiv, Vitalie Vacaras, Cristina Nistor, Cristiana Vacaras, Stefan Strilciuc and Dafin F Muresanu
Research Articles |
page 106-115 | 10.15698/mic2024.04.819 | Full text | PDF |
Abstract
Gut microbiota has complex immune functions, related to different pathologies, including multiple sclerosis (MS). This study evaluated the influence of treatments on gut microbiota in people with MS (PwMS). The research comprised 60 participants, including 39 PwMS and 21 healthy controls (HC). Among the PwMS, 20 were prescribed a disease-modifying therapy (DMT), either interferon beta1a or teriflunomide, while 19 received a combination of classical DMT and an immunoglobulin Y (IgY) supplement. For each participant, two sets of gut samples were collected: one at the study’s outset and another after two months. Alpha and beta diversity analyses revealed no significant differences between groups. In comparison to the HC, the MS group exhibited an increase in Prevotella stercorea and a decrease in Faecalibacterium prausnitzii. Following treatment, individuals with MS showed enrichment in Lachnospiraceae and Streptococcus. The second sample, compared to the first one, demonstrated an increase in Bifidobacterium angulatum and a decrease in Oscillospira for individuals with MS. Gut microbiota diversity in PwMS is not significantly different to HC. However, specific taxonomic changes indicate the presence of a dysbiosis state. The use of DMTs and immunoglobulin Y supplements may contribute to alterations in microbial composition, potentially leading to the restoration of a healthier microbiome.
The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit
Yiannis Pyrris, Georgia F. Papadaki, Emmanuel Mikros and George Diallinas
Research Articles |
page 1-15 | 10.15698/mic2024.01.811 | Full text | PDF |
Abstract
FurE is a H+ symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus Aspergillus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism. Most APC-type transporters possess two extra C-terminal TMS segments (TMS11-12), the function of which remains elusive. Here we present a systematic mutational analysis of TMS11-12 of FurE and show that two specific aromatic residues in TMS12, Trp473 and Tyr484, are essential for ER-exit and trafficking to the plasma membrane (PM). Molecular modeling shows that Trp473 and Tyr484 might be essential through dynamic interactions with residues in TMS2 (Leu91), TMS3 (Phe111), TMS10 (Val404, Asp406) and other aromatic residues in TMS12. Genetic analysis confirms the essential role of Phe111, Asp406 and TMS12 aromatic residues in FurE ER-exit. We further show that co-expression of FurE-Y484F or FurE-W473A with wild-type FurE leads to a dominant negative phenotype, compatible with the concept that FurE molecules oligomerize or partition in specific microdomains to achieve concentrative ER-exit and traffic to the PM. Importantly, truncated FurE versions lacking TMS11-12 are unable to reproduce a negative effect on the trafficking of co-expressed wild-type FurE. Overall, we show that TMS11-12 acts as an intramolecular chaperone for proper FurE folding, which seems to provide a structural code for FurE partitioning in ER-exit sites.
Two TonB-dependent outer membrane transporters involved in heme uptake in Anabaena sp. PCC 7120
Julia Graf, Martin Schöpperle, Rafael Pernil and Enrico Schleiff
Research Articles |
page 16-28 | 10.15698/mic2024.01.812 | Full text | PDF |
Abstract
Low availability of micronutrients such as iron has enforced the evolution of uptake systems in all kingdoms of life. In Gram-negative bacteria, outer membrane, periplasmatic and plasma membrane localized proteins facilitate the uptake of iron-loaded chelators, which are energized by TonB proteins. The specificity of different uptake systems likely depends either on the endogenously produced siderophore or on the bioavailability of iron-chelator complexes in the environment. Hence, an uptake system for schizokinen produced by the model cyanobacterium Anabaena sp. PCC 7120 exists, while bioinformatics analysis suggests the existence of additional systems, likely for uptake of xenosiderophores. Consistently, proteins encoded by alr2153 (hutA1) and alr3242 (hutA2) are assigned as outer membrane heme transporters. Indeed, Anabaena sp. PCC 7120 can utilize external heme as an iron source. The addition of heme resulted in an induction of genes involved in heme degradation and chlorophyll a synthesis and in an increase of the chlorophyll a content. Moreover, iron starvation induced the expression of hutA1, while the addition of heme led to its repression. Remarkably, the addition of a high concentration of heme but not iron starvation resulted in hutA2 induction. Plasmid insertion mutants of both genes exhibited a reduced capacity to recover from iron starvation by heme addition, which indicates a dependence of heme uptake on functional HutA1 and HutA2 proteins. The structural model generated by bioinformatics methods is further in agreement with a role in heme uptake. Thus, we provide evidence that Anabaena sp. PCC 7120 uses a heme uptake system in parallel to other iron acquisition systems.
Direct detection of stringent alarmones (pp)pGpp using malachite green
Muriel Schicketanz, Magdalena Petrová, Dominik Rejman, Margherita Sosio, Stefano Donadio and Yong Everett Zhang
Research Reports |
page 312-320 | 10.15698/mic2024.08.834 | Full text | PDF |
Abstract
The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in Escherichia coli. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp in vitro and discover novel regulators of RSH proteins.
Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy
Moritz Mayer, Christina Schug, Stefan Geimer, Till Klecker and Benedikt Westermann
Research Reports |
page 378-386 | 10.15698/mic2024.11.840 | Full text | PDF |
Abstract
Budding yeast Saccharomyces cerevisiae is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM). Preparation of yeast cells for TEM can be quite challenging and time-consuming. Here, we describe an optimized protocol for conventional fixation of yeast cells with potassium permanganate combined with cell wall permeabilization with sodium metaperiodate and embedding in Epon. We have replaced time-consuming incubation steps by short treatments with microwaves and developed a microwave-assisted permanganate fixation and Epon embedding protocol that reduces the time required for sample preparation to one working day. We expect that these protocols will be useful for routine analysis of membrane ultrastructure in yeast.
Unresolved mystery of cyclic nucleotide second messengers, periplasmic acid phosphatases and bacterial natural competence
Kristina Kronborg and Yong Everett Zhang
Research Reports |
page 235-241 | 10.15698/mic2024.07.828 | Full text | PDF |
Abstract
We recently characterized the competitive inhibition of cyclic AMP (cAMP) on three periplasmic acid phosphatases, AphAHi, NadNHi, and eP4 (HelHi), in Haemophilus influenzae Rd KW20. This inhibitory effect is vital for orchestrating the nutritional growth and competence development in KW20. Initially discovered in Escherichia coli, the function of AphA remains however obscure. This study investigates the regulation of E. coli aphA expression under nutrient starvation conditions. Using transcriptional reporters with truncated aphA promoter sequences, we found that starvations of carbon and phosphate, but not amino acid, stimulated aphA expression through distinct promoter regions. Deletions of crp or cyaA abolished aphA expression, confirming their crucial roles. Conversely, CytR deletion increased aphA expression, suggesting CytR’s role as a repressor of aphA expression. Additionally, we extended the study of three other second messengers, i.e., cyclic GMP, cyclic UMP, and cyclic CMP, each sharing structural similarities with cAMP. Notably, cGMP competitively inhibits AphAHi’s acid phosphatase activity akin to cAMP. In contrast, both cUMP and cCMP stimulate AphAHi’s phosphatase activity in a concentration dependent manner. Collectively, these data imply a complicated connection between nucleotide metabolism, AphA, cyclic purine and pyrimidine nucleotides in bacterial nutrient uptake and natural competence.