, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 31, 2021

Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration

Huong Thi Phuong1, Yuki Ishiwata-Kimata1, Yuki Nishi1, Norie Oguchi1, Hiroshi Takagi1 and Yukio Kimata1

This work demonstrates a scenario, in which aeration acts beneficially on Saccharmyces cerevisiae cells even under fermentative conditions.

, December 23, 2020

A novel BR-SMAD is required for larval development in barber’s pole worm Haemonchus contortus

Fangfang Li1, Peixi Qin1, Lisha Ye1, Nishith Gupta1,2,3 and Min Hu1

The herein presented results show a BMP-like receptor-regulated SMAD in Haemonchus contortus that is required for larval differentiation and underscore an adaptive functional repurposing of BMP-signaling in parasitic worms.

, October 12, 2020

Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA

Griet Van Zeebroeck1,2,†, Liesbeth Demuyser1,2,†, Zhiqiang Zhang1,2, Ines Cottignie1,2 and Johan M. Thevelein1,2

The herein presented work supports a model, in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.

, August 10, 2020

Novobiocin inhibits membrane synthesis and vacuole formation of Enterococcus faecalis protoplasts

Rintaro Tsuchikado1,#, Satoshi Kami1,#, Sawako Takahashi1 and Hiromi Nishida1

In this study Tsuchikado et al. show that DNA replication is crucial for plasma membrane biosynthesis and vacuole formation in Enterococcus faecalis protoplasts. Novobiocin inhibits DNA replication, blocking cell enlargement and vacuole formation. Extended treatment prevents re-enlargement after removal.

, July 20, 2020

Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast

Alissa D. Clear1,2,3, Glenn M. Manthey1,2, Olivia Lewis4,5, Isabelle Y. Lopez4,6, Rossana Rico4,7, Shannon Owens8,9, M. Cristina Negritto10, Elise W. Wolf10,11, Jason Xu10,12, Nikola Kenjić13, J. Jefferson P. Perry13, Aaron W. Adamson14, Susan L. Neuhausen14, Adam M. Bailis1,2,15

RAD52 is a key protein in DNA repair and suppresses DNA damage in yeast; however, certain variants affecting BRCA2 mutations fail to correct HRR defects. This suggests that HsRAD52 aids multiple DNA repair mechanisms and could be targeted for use in treating BRCA2-deficient cancers.

, June 30, 2020

Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae

Maria Stenger1, Duc Tung Le1, Till Klecker1 and Benedikt Westermann1

Using yeast Saccharomyces cerevisiae, the authors identified 254 nuclear genes essential for respiratory growth and 12 required for viability without mtDNA. They also found 176 genes involved in mitochondrial protein synthesis and mtDNA maintenance, offering a comprehensive view of the processes supporting oxidative phosphorylation.

, April 24, 2020

Histone H3E73Q and H4E53A mutations cause recombinogenic DNA damage

Pedro Ortega1, Desiré García-Pichardo1, Marta San Martin-Alonso1, Ana G. Rondón1, Belén Gómez-González1 and Andrés Aguilera1

This study reveals that conserved residues H3E73 and H4E53 in histones H3 and H4 play a crucial role in maintaining genome stability. Mutations at these sites increase recombinogenic DNA damage, likely due to replication-associated issues rather than transcriptional activity, highlighting their importance in DNA damage prevention and repair.

, March 20, 2020

Sulforaphane alters the acidification of the yeast vacuole

Alexander Wilcox1,#, Michael Murphy1,#, Douglass Tucker1,#, David Laprade1, Breton Roussel1, Christopher Chin2, Victoria Hallisey1, Noah Kozub1, Abraham Brass2 and Nicanor Austriaco1

This study identifies vacuolar pH regulation as a key factor in sulforaphane (SFN) sensitivity, showing that SFN-induced cell death in yeast – and potentially in human cancer cells – is linked to its ability to raise vacuolar or lysosomal pH.

, March 12, 2020

Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids

Edruce Edouarzin1, Connor Horn2, Anuja Paudyal2, Cunli Zhang1, Jianyu Lu1, Zongbo Tong1, Guri Giaever3, Corey Nislow3, Raja Veerapandian2, Duy H. Hua1 and Govindsamy Vediyappan2

This study identifies (-)-drimenol as a potent broad-spectrum antifungal agent effective against multiple pathogenic fungi, including drug-resistant strains, and reveals its mechanism of action involves disruption of fungal membranes and targeting Crk1-related pathways, with potential for structural optimization to enhance efficacy.

Previous Next
, June 20, 2016

Antibiotic use in childhood alters the gut microbiota and predisposes to overweight

Katri Korpela and Willem M de Vos

This article comments on work published by Korpela et al. (Nat Commun, 2016), which investigates the correlation between the use of antibiotics in early life and the excessive weight gain in later childhood.

, June 20, 2016

Evidence for the hallmarks of human aging in replicatively aging yeast

Georges E. Janssens, Liesbeth M. Veenhoff

Recently, efforts have been made to characterize the hallmarks that accompany and contribute to the phenomenon of aging, as most relevant for humans. Remarkably, studying the finite lifespan of the single cell eukaryote budding yeast has been paramount for our understanding of aging. Here, we compile observations from literature over the past decades of research on replicatively aging yeast to highlight how the hallmarks of aging in humans are present in yeast.

, May 10, 2016

Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications

Sandro Roier, Franz G. Zingl, Fatih Cakar, and Stefan Schild

This article comments on work published by Roier et al. (Nat Commun, 2016), which proposes a novel and highly conserved bacterial outer membane vesicle biogenesis mechanism based on phospholipid accumulation in the outer leaflet of the outer membrane.

, April 16, 2016

A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance

Mehdi Kabbage1, Ryan Kessens1 and Martin B. Dickman2

This article comments on work published by Li et al. (Plant Cell, 2016), which focuses on the role of Bcl-2-associated athanogene 6 (BAG6) in plant innate immunity, showing that BAG6 plays a key role in basal plant defense against fungal pathogens.

, April 14, 2016

The molecular and cellular action properties of artemisinins: what has yeast told us?

Chen Sun and Bing Zhou

Artemisinin (ART) or Qinghaosu is a natural compound possessing superior anti-malarial activity. Although intensive studies have been done in the medicinal chemistry field to understand the structure-effect relationship, the biological actions of artemisinin are poorly understood and controversial. This review summarizes what we have learned from yeast about the basic biological properties of ARTs, as well as some key unanswered questions.

, April 14, 2016

Metabolic network structure and function in bacteria goes beyond conserved enzyme components

Jannell V. Bazurto# and Diana M. Downs

This article comments on work published by Bazurto et al. (MBio, 2016), which demonstrated that conservation of metabolic components was not sufficient to predict network structure and function Escherichia coli.

, April 5, 2016

Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

Jigang Wang1,2,# and Qingsong Lin2

This article comments on work published by Wang et al. (Nat Commun, 2014), which provides insights into the mode-of-action of artemisinin and its specificity against malaria parasites.

, April 5, 2016

Translational repression in malaria sporozoites

Oliver Turque1, Tiffany Tsao1, Thomas Li1 and Min Zhang1,2

This article comments on work published by Zhang et al. (PLoS Pathog, 2016), which summarizea recent advances in the translational repression of gene expression in the malaria sporozoite.

, April 4, 2016

Chromatin binding and silencing: Two roles of the same protein Lem2

Ramón Ramos Barrales and Sigurd Braun

This article comments on work published by Barrales et al. (Genes Dev, 2016), which identifies the nuclear envelope protein Lem2, a homolog of metazoan lamin-associated proteins (LAPs), as a relevant factor for heterochromatin silencing and perinuclear localization in the fission yeast Schizosaccharomyces pombe.

Previous Next
, February 21, 2025

It takes four to tango: the cooperative adventure of scientific publishing

Didac Carmona-Gutierrez1,2, Katharina Kainz1 and Frank Madeo1-3

This Editorial is the 500th article published in Microbial Cell, a journey that started in 2014 and has seen the journal grow steadily and maintain itself as a respected community platform. The foundation that has allowed for and driven this development – as for any responsible journal – is composed of four essential pillars: the readers, the authors, the editors and the referees.

, August 20, 2024
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Eun-Gyu No, Heidi M Blank and Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.

, June 1, 2023

Ribose 5-phosphate: the key metabolite bridging the metabolisms of nucleotides and amino acids during stringent response in Escherichia coli?

Paulina Katarzyna Grucela1, Tobias Fuhrer2, Uwe Sauer2, Yanjie Chao3 and Yong Everett Zhang1

Here we propose the metabolite ribose 5’-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.

August 24, 2022

Flagellated bacterial porter for in situ tumor vaccine

Haiheng Xu1, Yiqiao Hu1, 2 and Jinhui Wu1, 2, 3

Cancer immunotherapy, which use the own immune system to attack tumors, are increasingly popular treatments. But, due to the tumor immunosuppressive microenvironment, the antigen presentation in the tumor is limited. Recently, a growing number of people use bacteria to stimulate the body’s immunity for tumor treatment due to bacteria themselves have a variety of elements that activate Toll-like receptors. Here, we discuss the use of motility of flagellate bacteria to transport antigens to the tumor periphery to activate peritumoral dendritic cells to enhance the effect of in situ tumor vaccines.

August 1, 2022

The rise of Candida auris: from unique traits to co-infection potential

Nadine B. Egger1,§, Katharina Kainz1,§, Adina Schulze1, Maria A. Bauer1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

Candida auris is a multidrug resistant (MDR) fungal pathogen with a crude mortality rate of 30-60%. First identified in 2009, C. auris has been rapidly rising to become a global risk in clinical settings and was declared an urgent health threat by the Centers for Disease Control and Prevention (CDC). A concerted global action is thus needed to successfully tackle the challenges created by this emerging fungal pathogen. In this brief article, we underline the importance of unique virulence traits, including its easy transformation, its persistence outside the host and its resilience against multiple cellular stresses, as well as of environmental factors that have mainly contributed to the rise of this superbug.

April 4, 2022

A hundred spotlights on microbiology: how microorganisms shape our lives

Didac Carmona-Gutierrez1, Katharina Kainz1, Andreas Zimmermann1, Sebastian J. Hofer1, Maria A. Bauer1, Christoph Ruckenstuhl1, Guido Kroemer2-4 and Frank Madeo1,5,6

Viral, bacterial, fungal and protozoal biology is of cardinal importance for the evolutionary history of life, ecology, biotechnology and infectious diseases. Various microbiological model systems have fundamentally contributed to the understanding of molecular and cellular processes, including the cell cycle, cell death, mitochondrial biogenesis, vesicular fusion and autophagy, among many others. Microbial interactions within the environment have profound effects on many fields of biology, from ecological diversity to the highly complex and multifaceted impact of the microbiome on human health. Also, biotechnological innovation and corresponding industrial operations strongly depend on microbial engineering. With this wide range of impact in mind, the peer-reviewed (…)

March 21, 2022

Yeast goes viral: probing SARS-CoV-2 biology using S. cerevisiae

Brandon Ho1, Raphael Loll-Krippleber1 and Grant W. Brown1

The budding yeast Saccharomyces cerevisiae has long been an outstanding platform for understanding the biology of eukaryotic cells. Robust genetics, cell biology, molecular biology, and biochemistry complement deep and detailed genome annotation, a multitude of genome-scale strain collections for functional genomics, and substantial gene conservation with Metazoa to comprise a powerful model for modern biological research. Recently, the yeast model has demonstrated its utility in a perhaps unexpected area, that of eukaryotic virology. Here we discuss three innovative applications of the yeast model system to reveal functions and investigate variants of proteins encoded by the SARS-CoV-2 virus.

, December 6, 2021

Murals meet microbes: at the crossroads of microbiology and cultural heritage

Maria A. Bauer1, Katharina Kainz1, Christoph Ruckenstuhl1, Frank Madeo1-3 and Didac Carmona-Gutierrez1

This article comments on the duality of microorganisms in the conservation and restoration of cultural heritage, which encompasses the negative impact of damaging microorganisms and recent advances in using specific microorganisms and microbial-based technologies for cultural heritage preservation.

, September 21, 2021

Urm1, not quite a ubiquitin-like modifier?

Lars Kaduhr1, Cindy Brachmann1, Keerthiraju Ethiraju Ravichandran2,3, James D. West4, Sebastian Glatt2 and Raffael Schaffrath1

This article comments on work published by Brachmann et al. (Redox Biol, 2020), which studied urmylation of the yeast 2-Cys peroxiredoxin Ahp1, uncovering that promiscuous lysine target sites and specific redox requirements determine the Urm1 acceptor activity of the peroxiredoxin.

Next

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.