, January 28, 2026
Regulation of extracellular vesicles for protein secretion in <i>Aspergillus nidulans</i>

Regulation of extracellular vesicles for protein secretion in Aspergillus nidulans

Rebekkah E. Pope1, Patrick Ballmann2, Lisa Whitworth3 and Rolf A. Prade1,*

This study reveals that Aspergillus nidulans boosts extracellular vesicle production when ER-trafficked enzymes are induced, uncovering how fungi remodel their secretome through vesicle-mediated secretion to adapt to changing environments and biofilm formation.

January 23, 2026
Transcriptomic response to different heme sources in <i>Trypanosoma cruzi</i> epimastigotes

Transcriptomic response to different heme sources in Trypanosoma cruzi epimastigotes

Evelyn Tevere1,a, María G. Mediavilla1,a, Cecilia B. Di Capua1, Marcelo L. Merli1, Carlos Robello2,3, Luisa Berná2,4 and Julia A. Cricco

This study uncovers how the Chagas disease parasite adapts to changes in heme, an essential molecule for its survival, providing transcriptional clues to heme metabolism and identifying a previously unreported heme-binding protein in T. cruzi.

, January 21, 2026

Sir2 regulates selective autophagy in stationary-phase yeast cells

Ji-In Ryua, Juhye Junga, and Jeong-Yoon Kim

This study establishes Sir2 as a previously unrecognized regulator of selective autophagy during the stationary phase and highlight how cells dynamically control organelle degradation.

, March 31, 2021

Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration

Huong Thi Phuong1, Yuki Ishiwata-Kimata1, Yuki Nishi1, Norie Oguchi1, Hiroshi Takagi1 and Yukio Kimata1

This work demonstrates a scenario, in which aeration acts beneficially on Saccharmyces cerevisiae cells even under fermentative conditions.

, December 23, 2020

A novel BR-SMAD is required for larval development in barber’s pole worm Haemonchus contortus

Fangfang Li1, Peixi Qin1, Lisha Ye1, Nishith Gupta1,2,3 and Min Hu1

The herein presented results show a BMP-like receptor-regulated SMAD in Haemonchus contortus that is required for larval differentiation and underscore an adaptive functional repurposing of BMP-signaling in parasitic worms.

, October 12, 2020

Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA

Griet Van Zeebroeck1,2,†, Liesbeth Demuyser1,2,†, Zhiqiang Zhang1,2, Ines Cottignie1,2 and Johan M. Thevelein1,2

The herein presented work supports a model, in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.

, August 10, 2020

Novobiocin inhibits membrane synthesis and vacuole formation of Enterococcus faecalis protoplasts

Rintaro Tsuchikado1,#, Satoshi Kami1,#, Sawako Takahashi1 and Hiromi Nishida1

In this study Tsuchikado et al. show that DNA replication is crucial for plasma membrane biosynthesis and vacuole formation in Enterococcus faecalis protoplasts. Novobiocin inhibits DNA replication, blocking cell enlargement and vacuole formation. Extended treatment prevents re-enlargement after removal.

, July 20, 2020

Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast

Alissa D. Clear1,2,3, Glenn M. Manthey1,2, Olivia Lewis4,5, Isabelle Y. Lopez4,6, Rossana Rico4,7, Shannon Owens8,9, M. Cristina Negritto10, Elise W. Wolf10,11, Jason Xu10,12, Nikola Kenjić13, J. Jefferson P. Perry13, Aaron W. Adamson14, Susan L. Neuhausen14, Adam M. Bailis1,2,15

RAD52 is a key protein in DNA repair and suppresses DNA damage in yeast; however, certain variants affecting BRCA2 mutations fail to correct HRR defects. This suggests that HsRAD52 aids multiple DNA repair mechanisms and could be targeted for use in treating BRCA2-deficient cancers.

, June 30, 2020

Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae

Maria Stenger1, Duc Tung Le1, Till Klecker1 and Benedikt Westermann1

Using yeast Saccharomyces cerevisiae, the authors identified 254 nuclear genes essential for respiratory growth and 12 required for viability without mtDNA. They also found 176 genes involved in mitochondrial protein synthesis and mtDNA maintenance, offering a comprehensive view of the processes supporting oxidative phosphorylation.

, April 24, 2020

Histone H3E73Q and H4E53A mutations cause recombinogenic DNA damage

Pedro Ortega1, Desiré García-Pichardo1, Marta San Martin-Alonso1, Ana G. Rondón1, Belén Gómez-González1 and Andrés Aguilera1

This study reveals that conserved residues H3E73 and H4E53 in histones H3 and H4 play a crucial role in maintaining genome stability. Mutations at these sites increase recombinogenic DNA damage, likely due to replication-associated issues rather than transcriptional activity, highlighting their importance in DNA damage prevention and repair.

, March 20, 2020

Sulforaphane alters the acidification of the yeast vacuole

Alexander Wilcox1,#, Michael Murphy1,#, Douglass Tucker1,#, David Laprade1, Breton Roussel1, Christopher Chin2, Victoria Hallisey1, Noah Kozub1, Abraham Brass2 and Nicanor Austriaco1

This study identifies vacuolar pH regulation as a key factor in sulforaphane (SFN) sensitivity, showing that SFN-induced cell death in yeast – and potentially in human cancer cells – is linked to its ability to raise vacuolar or lysosomal pH.

, March 12, 2020

Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids

Edruce Edouarzin1, Connor Horn2, Anuja Paudyal2, Cunli Zhang1, Jianyu Lu1, Zongbo Tong1, Guri Giaever3, Corey Nislow3, Raja Veerapandian2, Duy H. Hua1 and Govindsamy Vediyappan2

This study identifies (-)-drimenol as a potent broad-spectrum antifungal agent effective against multiple pathogenic fungi, including drug-resistant strains, and reveals its mechanism of action involves disruption of fungal membranes and targeting Crk1-related pathways, with potential for structural optimization to enhance efficacy.

Previous Next
, July 14, 2014

Increased Trypanosoma brucei cathepsin-L activity inhibits human serum-mediated trypanolysis

Sam Alsford

This article comments on work published by Alsford et al. (PLoS Pathogens, 2014), which identified a Trypanosoma brucei lysosomal cathepsin with an inhibitory effect on human serum’s trypanolytic action.

, July 14, 2014

A novel role of centrin in flagellar motility: stabilizing an inner-arm dynein motor in the flagellar axoneme

Ziyin Li

This article comments on work published by Wei et al. (Nat Comm, 2014), which discovered that centrin maintains the stability of an inner-arm dynein in the flagellar axoneme in Trypanosoma brucei.

, July 6, 2014

A non-proteolytic function of ubiquitin in transcription repression

Ada Ndoja and Tingting Yao

This article comments on work published by Ndoja et al. (Mol Cell, 2014), which demonstrates that monoubiquitination of some transcription activators can inhibit transcription by recruiting the AAA+ ATPase Cdc48 (also known in metazoans as p97 or VCP), which then extracts the ubiquitinated activator from DNA.

, June 29, 2014

Mutagenesis by host antimicrobial peptides: insights into microbial evolution during chronic infections

Dominique H. Limoli and Daniel J. Wozniak

This article comments on work published by Limoli et al. ((PLoS Pathogens, 2014), which provides evidence that at subinhibitory levels, AMPs promote mutations in bacterial DNA, which enhance bacterial survival.

, June 25, 2014

Where antibiotic resistance mutations meet quorum-sensing

Rok Krašovec1, Roman V. Belavkin2, John A.D. Aston3, Alastair Channon4, Elizabeth Aston4, Bharat M. Rash1, Manikandan Kadirvel5,6, Sarah Forbes6, and Christopher G. Knight1

This article comments on work published by Krašovec et al. (Nat Comm, 2014), which found that the modulation of de novo mutation to promote antibiotic resistance depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress).

, June 25, 2014

Sphingolipids and mitochondrial function, lessons learned from yeast

Pieter Spincemaille1, Bruno P.A. Cammue1,2 and Karin Thevissen1

This article reviews recent research showing that Saccharomyces cerevisiae is an invaluable model to investigate sphingolipids as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on sphingolipids and mitochondria in mammalian cells.

, June 2, 2014

Genome evolution in yeast reveals connections between rare mutations in human cancer

Xinchen Teng1,2 and J. Marie Hardwick2

This article comments on work published by Teng et al. (Mol Cell, 2013), which, using the yeast knockout collections, provides hard evidence that single gene deletions/mutations in most non-essential genes can drive the selection for cancer-like mutations.

, May 27, 2014

Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

Anthony Arlia-Ciommo#, Anna Leonov#, Amanda Piano#, Veronika Svistkova# and Vladimir I. Titorenko

This article critically analyzes recent advances in the understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. It proposes a concept of a biomolecular network underlying the chronology of cellular aging in yeast, whichposits that such network progresses through a series of lifespan checkpoints.

, May 20, 2014

Decoding the biosynthesis and function of diphthamide, an enigmatic modification of translation elongation factor 2 (EF2)

Raffael Schaffrath and Michael J. R. Stark

This article comments on work published by Uthman et al. (PLoS Genet, 2013), which suggests that Dph5 has a novel role as an EF2 inhibitor that affects cell growth when diphthamide synthesis is blocked or incomplete and shows that diphthamide promotes the accuracy of EF2 performance during translation.

Previous Next
, November 21, 2019

Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1

Estéfani García-Ríos1 and José Manuel Guillamón1

This article discusses the importance of understanding sulfite resistance in Saccharomyces cerevisiae due to its use in winemaking and the potential role of the transcription factor Com2. While the SSU1 gene and its activity have been correlated with sulfite tolerance, the work by Lage et al. (2019) indicates that Com2 might control a large percentage of the genes activated by SO2 and contribute to the yeast’s protective response, offering new insights into the molecular factors influencing this oenological trait.

Targeting GATA transcription factors – a novel strategy for anti-aging interventions?

Andreas Zimmermann1, Katharina Kainz1,2, Sebastian J. Hofer1,3, Maria A. Bauer1, Sabrina Schroeder1, Jörn Dengjel4, Federico Pietrocola5, Oliver Kepp6-9, Christoph Ruckenstuhl1, Tobias Eisenberg1,3,10,11, Stephan J. Sigrist12, Frank Madeo1,3,10, Guido Kroemer6-9, 13-15 and Didac Carmona-Gutierrez1

This article comments on work published by Carmona-Gutierrez et al. (Nat Commun., 2019), which identified a natural compound, 4,4′-dimethoxychalcone, inducing autophagy and prolonging lifespan in different organisms through a mechanism that involves GATA transcription factors.

, January 21, 2019

In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles

Miroslav Oborník 1,2

This In the Pit article argues that the naming conventions for biological entities influence research perspectives and methodologies, advocating for mitochondria and plastids to be classified and named as bacteria due to their endosymbiotic origins, with potential implications for our understanding of bacterial prevalence, definitions of the microbiome and multicellularity, and the concept of endosymbiotic domestication.

, January 21, 2019

What’s in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts

Ansgar Gruber1

This In the Pit article suggests redefining the relationship between hosts and endosymbionts, like mitochondria and plastids, as a single species based on “sexual symbiont integration,” the loss of independent speciation, and congruence in genetic recombination and population sizes, rather than solely on historic classifications or structural properties.

, May 7, 2018

Microbial wars: competition in ecological niches and within the microbiome

Maria A. Bauer1, Katharina Kainz1, Didac Carmona-Gutierrez1 and Frank Madeo1,2

In this Editorial Bauer et al. provide a brief overview on microbial competition and discuss some of its roles and consequences that directly affect humans.

, December 6, 2017

Exploring the mechanism of amebic trogocytosis: the role of amebic lysosomes

Allissia A. Gilmartin1 and William A. Petri, Jr1,2,3

In this article, the authors comment on the study “Inhibition of Amebic Lysosomal Acidification Blocks Amebic Trogocytosis and Cell Killing” by Gilmartin et al. (MBio, 2017), discussing the the role of amebic lysosomes in Trogocytosis, the intracellular transfer of fragments of cell material.

, October 24, 2017

Uncovering the hidden: complexity and strategies for diagnosing latent tuberculosis

Mario Alberto Flores-Valdez

This editorial postulates that advanced proteomic and transcriptomic techniques are evolving and may enhance the detection of latent tuberculosis, thereby distinguishing true M. tuberculosis infections from other conditions, which is vital for controlling potential reactivation and transmission.

, August 6, 2017

The Yin & Yang of Mitochondrial Architecture – Interplay of MICOS and F1Fo-ATP synthase in cristae formation

Heike Rampelt1 and Martin van der Laan2

This Editorial posits that mitochondrial cristae architecture is shaped by the interplay of MICOS and ATP synthase, with a recent study illuminating their roles in cristae formation and maintenance.

, March 27, 2017

When a ribosomal protein grows up – the ribosome assembly path of Rps3

Brigitte Pertschy

This article comments on two papers by Mitterer et al., which followed yeast protein Rps3, highlighting the sophisticated mechanisms for protein protection, nuclear transport, and integration into pre-ribosomal particles for final assembly with 40S subunits.

Microbial Cell

is an open-access, peer-reviewed journal that publishes exceptionally relevant research works that implement the use of unicellular organisms (and multicellular microorganisms) to understand cellular responses to internal and external stimuli and/or human diseases.

Metrics
you can trust

Can’t find what you’re looking for?

You can browse all our issues and published articles here.

FAQs

Whether you’re preparing a manuscript, reviewing a paper, or just exploring the journal, this FAQ answers the essentials—from scope and founders to impact and how to submit. Prefer a tailored path? Pick For authors or For reviewers below.

Peer-reviewed, open-access research using unicellular organisms (and multicellular microorganisms) to understand cellular responses and human disease.

The journal (founded in 2014) is led by its Editors-in-Chief Frank Madeo, Didac Carmona-Gutierrez, and Guido Kroemer

Microbial Cell has been publishing original scientific literature since 2014, and from the very beginning has been managed by active scientists through an independent Publishing House (Shared science Publishers). The journal was conceived as a platform to acknowledge the importance of unicellular organisms, both as model systems as well as in the biological context of human health and disease.

Ever since, Microbial Cell has very positively developed and strongly grown into a respected journal in the unicellular research community and even beyond. This scientific impact is reflected in the yearly number of citations obtained by articles published in Microbial Cell, as recorded by the Web of Science (Clarivate, formerly Thomson/Reuters):

The scientific impact of Microbial Cell is also mirrored in a series of milestones:

2015: Microbial Cell is included in the Emerging Sources Citation Index (ESCI), a selection of developing journals drafted by Clarivate Analytics based on the candidate’s publishing standards, quality, editorial content, and citation data. Note: As an ESCI-selected journal, Microbial Cell is currently being evaluated in a rigorous and long process to determine an inclusion in the Science Citation Index Expanded (SCIE), which allows the official calculation of Clarivate Analytics’ impact factor.

2016: Microbial Cell is awarded the so-called DOAJ Seal by the selective Directory of Open Access Journals (DOAJ). The DOAJ Seal is an exclusive mark of certification for open access journals granted by DOAJ to journals that adhere to outstanding best practice and achieve an extra high and clear commitment to open access and high publishing standards.

2017: Microbial Cell is included in Pubmed Central (PMC), allowing the archiving of all the journal’s articles in PMC and PubMed.

2019: Microbial Cell is indexed in the prestigious abstract and citation database Scopus after a thorough selection process. This also means that Microbial Cell obtains, for the first time, an official Scopus CiteScore as well as an official journal ranking in the Scimago Journal and Country Ranking.

2022: Microbial Cell’s CiteScore reaches a value of 7.2 for the year 2021, positioning Microbial Cell among the top microbiology journals (previously available CiteScores: 2019: 5.4; 2020: 5.1).

2022: Microbial Cell is indexed in the highly selective Science Citation Index Expanded™, which covers approx. 9,500 of the world’s most impactful journals across 178 scientific disciplines. In their journal selection and curation process, Clarivate´s editors apply 24 ‘quality’ criteria and four ‘impact’ criteria to select the most influential journals in their respective fields. This selection is also a pre-requisite for inclusion in the JCR, which features the impact factor.

2022: Microbial Cell is listed in the Journal Citation Reports™ (JCR), and obtains its first official Journal Impact Factor™ (JIF) for the year 2021: 5.316.

Check Article Types and Manuscript Preparation guidelines. Submit online via Scholastica.